Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10793 publications
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Collaborative Diffusion Model for Recommender System
Gyuseok Lee
Yaochen Zhu
Hwanjo Yu
Yao Zhou
Jundong Li
2025
Preview abstract
Diffusion-based recommender systems (DR) have gained increasing attention for their advanced generative and denoising capabilities. However, existing DR face two central limitations: (i) a trade-off between enhancing generative capacity via noise injection and retaining the loss of personalized information. (ii) the underutilization of rich item-side information. To address these challenges, we present a Collaborative Diffusion model for Recommender System (CDiff4Rec). Specifically, CDiff4Rec generates pseudo-users from
item features and leverages collaborative signals from both real and pseudo personalized neighbors identified through behavioral similarity, thereby effectively reconstructing nuanced user preferences. Experimental results on three public datasets show that CDiff4Rec outperforms competitors by effectively mitigating the loss of personalized information through the integration of item content and collaborative signals.
View details
Fast electronic structure quantum simulation by spectrum amplification
Guang Hao Low
Robbie King
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
Alec White
Rolando Somma
arXiv:2502.15882 (2025)
Preview abstract
The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst.
View details
Preview abstract
A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving ``steering vectors'' from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to implicit weight updates Dherin et al. (2025), we generalize this theory to deep, multi-block transformers. We show how the information contained in any chunk of a user prompt is represented and composed internally through virtual weight vectors and virtual weight matrices. We then derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector- and matrix-based model editing techniques and offer a direct, computationally-grounded method for transforming textual input into reusable weight updates.
View details
Preview abstract
Motivated by the growing demand for serving large language model inference requests, we study distributed load balancing for global serving systems with network latencies. We consider a fluid model in which continuous flows of requests arrive at different frontends and need to be routed to distant backends for processing whose processing rates are workload dependent. Network latencies can lead to long travel times for requests and delayed feedback from backends. The objective is to minimize the average latency of requests, composed of the network latency and the serving latency at the backends.
We introduce Distributed Gradient Descent Load Balancing (DGD-LB), a probabilistic routing algorithm in which each frontend adjusts the routing probabilities dynamically using gradient descent. Our algorithm is distributed: there is no coordination between frontends, except by observing the delayed impact other frontends have on shared backends. The algorithm uses an approximate gradient that measures the marginal impact of an additional request evaluated at a delayed system state. Equilibrium points of our algorithm minimize the centralized optimal average latencies, and we provide a novel local stability analysis showing that our algorithm converges to an optimal solution when started sufficiently close to that point. Moreover, we present sufficient conditions on the step-size of gradient descent that guarantee convergence in the presence of network latencies. Numerical experiments show that our algorithm is globally stable and optimal, confirm our stability conditions are nearly tight, and demonstrate that DGD-LB can lead to substantial gains relative to other load balancers studied in the literature when network latencies are large.
View details
Improved Balanced Classification with Theoretically Grounded Loss Functions
The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
Preview abstract
The *balanced loss* is a widely adopted objective for multi-class classification under class imbalance. By assigning equal importance to all classes, regardless of their frequency, it promotes fairness and ensures that minority classes are not overlooked. However, directly minimizing the balanced classification loss is typically intractable, which makes the design of effective surrogate losses a central question. This paper introduces and studies two advanced surrogate loss families: Generalized Logit-Adjusted (GLA) loss functions and Generalized Class-Aware weighted (GCA) losses. GLA losses generalize Logit-Adjusted losses, which shift logits based on class priors, to the broader general cross-entropy loss family. GCA loss functions extend the standard class-weighted losses, which scale losses inversely by class frequency, by incorporating class-dependent confidence margins and extending them to the general cross-entropy family. We present a comprehensive theoretical analysis of consistency for both loss families. We show that GLA losses are Bayes-consistent, but only $H$-consistent for unbounded and complete hypothesis sets. Moreover, their $H$-consistency bounds depend inversely on the minimum class probability, scaling at least as $1/\mathsf p _{\min}$. In contrast, GCA losses are $H$-consistent for any hypothesis set that is bounded or complete, with $H$-consistency bounds that scale more favorably as $1/\sqrt{\mathsf p _{\min}}$, offering significantly stronger theoretical guarantees in imbalanced settings. We report the results of experiments demonstrating that, empirically, both the GCA losses with calibrated class-dependent confidence margins and GLA losses can greatly outperform straightforward class-weighted losses as well as the LA losses. GLA generally performs slightly better in common benchmarks, whereas GCA exhibits a slight edge in highly imbalanced settings. Thus, we advocate for both GLA and GCA losses as principled, theoretically sound, and state-of-the-art surrogates for balanced classification under class imbalance.
View details
AI as a Catalyst for Educational Equity: Addressing Global Teacher Shortages and Learning Disparities
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCERT) (2025)
Preview abstract
The global education system is grappling with a critical shortage of teachers, threatening the achievement of universal quality education. This article examines how artificial intelligence (AI) technologies can revolutionize educational access and equity by addressing these systemic challenges. Through a comprehensive article analysis of AI-enabled solutions, including personalized learning mechanisms, virtual tutoring systems, and intelligent content distribution platforms, the article explores the transformative potential of these technologies in democratizing education. The article investigates the implementation of AI across established educational platforms, examining their effectiveness in providing adaptive learning experiences, breaking down language barriers, and ensuring cultural relevance. The article demonstrates that strategic AI integration can significantly impact learning outcomes while helping to bridge the global teacher shortage gap. The article also addresses critical implementation challenges, providing policy recommendations and resource allocation frameworks for successful AI adoption in education systems worldwide. This article analysis contributes to the growing body of knowledge on educational technology by offering practical insights into how AI can be leveraged to create more inclusive, effective, and accessible learning environments, ultimately advancing the goal of quality education for all.
View details
Preview abstract
Evolutionary relationships between entities within an ecological niche are characterised by varying degrees of interdependence and resulting forms of symbiotic, predatory or competitive behaviors. This paper hypothesizes that mutual prediction is a defining factor in the kind of relationship which forms between entities, as well as the power distribution and stability of that relationship. Throughout history, humans have engaged in complex mutually predictive relationships with the animals we domesticate, the plants we eat and the tools we create. We have generally had a better predictive model of the entities we have co-evolved with than they have had of us. In AI we encounter the first entity which may be able to predict us - including our thoughts, beliefs, feelings and plans - better than we can predict it. The current state of human predictive advantage may give way to predictive equilibrium or even human out-prediction by AIs. This paper defines a classification system for degrees of mutual prediction in human-AI interactions ranging from rules-based prediction through to a speculative capacity for mindreading, and uses the classification as axes to map human predictive ability against AI predictive ability. Past, present, and speculated future relationships between humans and AIs are plotted on the map, encompassing cases of predictive imbalance in both directions and exploring the implications of mutual prediction for human-AI coevolutionary paths. The examples highlight possible sources of human-AI misalignment and the mutual prediction framework provides a lens through which to understand AI systems as part of evolutionary processes at large.
View details
Preview abstract
Bandit Convex Optimization is a fundamental class of sequential decision-making problems, where the learner selects actions from a continuous domain and observes a loss (but not its gradient) at only one point per round. We study this problem in non-stationary environments, and aim to minimize the regret under three standard measures of non-stationarity: the number of switches S in the comparator sequence, the total variation Delta of the loss functions, and the path-length P of the comparator sequence. We propose a polynomial-time algorithm, Tilted Exponentially Weighted Average with Sleeping Experts (TEWA-SE), which adapts the sleeping experts framework from online convex optimization to the bandit setting. For strongly convex losses, we prove that TEWA-SE is minimax-optimal with respect to known S and Delta by establishing matching upper and lower bounds. By equipping TEWA-SE with the Bandit-over-Bandit framework, we extend our analysis to environments with unknown non-stationarity measures. For general convex losses, we introduce a second algorithm, clipped Exploration by Optimization (cExO), based on exponential weights over a discretized action space. While not polynomial-time computable, this method achieves minimax-optimal regret with respect to known S and Delta, and improves on the best existing bounds with respect to P.
View details
Develop High-performance Quantum Hardware
Yu Chen
(2025)
Preview abstract
A review on the hardware development in QAI, based on existing publications
View details
(D)RAGged Into a Conflict: Detecting and Addressing Conflicting Sources in Retrieval-Augmented LLMs
Arie Cattan
Alon Jacovi
Ori Ram
Eran Ofek
2025
Preview abstract
Retrieval Augmented Generation (RAG) is a commonly used approach for enhancing LLMs with relevant and up-to-date information. However, the retrieved sources can often bring conflicting information and it is not clear how models address such discrepancies. In this work, we first point out that knowledge conflicts stem from various reasons and thus require tailored solutions in order to better align model responses to human preferences. To that end, we introduce a novel taxonomy of knowledge conflicts in RAG and define the desired model’s behavior for each category. Additionally, we construct a high-quality benchmark by asking two expert annotators to identify the conflict type within realistic RAG instances, each comprising a query and its associated search results. Finally, we conduct extensive experiments and show that explicitly informing LLMs about the potential conflict category significantly improves the quality and appropriateness of the responses. Yet, there is still a vast room for improvement. Taken together, our work highlights the importance of evaluating RAG systems not only on factual accuracy but also on their ability to manage and resolve knowledge conflicts effectively.
View details
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Vincent Rudolf Meijer
Rémi Chevallier
Allie Duncan
Kyle McConnaughay
Atmospheric Measurement Techniques, 18 (2025), pp. 3495-3532
Preview abstract
Condensation trail (contrail) cirrus clouds cause a substantial fraction of aviation's climate impact. One proposed method for the mitigation of this impact involves modifying flight paths to avoid particular regions of the atmosphere that are conducive to the formation of persistent contrails, which can transform into contrail cirrus. Determining the success of such avoidance maneuvers can be achieved by ascertaining which flight formed each nearby contrail observed in satellite imagery. The same process can be used to assess the skill of contrail forecast models. The problem of contrail-to-flight attribution is complicated by several factors, such as the time required for a contrail to become visible in satellite imagery, high air traffic densities, and errors in wind data. Recent work has introduced automated algorithms for solving the attribution problem, but it lacks an evaluation against ground-truth data. In this work, we present a method for producing synthetic contrail detections with predetermined contrail-to-flight attributions that can be used to evaluate – or “benchmark” – and improve such attribution algorithms. The resulting performance metrics can be employed to understand the implications of using these observational data in downstream tasks, such as forecast model evaluation and the analysis of contrail avoidance trials, although the metrics do not directly quantify real-world performance. We also introduce a novel, highly scalable contrail-to-flight attribution algorithm that leverages the characteristic compounding of error induced by simulating contrail advection using numerical weather models. The benchmark shows an improvement of approximately 25 % in precision versus previous contrail-to-flight attribution algorithms, without compromising recall.
View details
Preview abstract
In Julia, JuMP is the go-to modelling package for mathematical optimisation. As of this writing, Google's award-winning solvers have not been accessible through JuMP; which offers Julia's ease of use. ORTools.jl is changing this. Julia users will now have access to Google's Glop, CP-SAT, and PDLP solvers through JuMP as provided by the ORTools.jl package.
This talk offers an introduction to the features of the package and an overview of the difficulties we encountered.
View details
On the Design of the Binaural Rendering Library for Eclipsa Audio Immersive Audio Container
Tomasz Rudzki
Gavin Kearney
AES 158th Convention of the Audio Engineering Society (2025)
Preview abstract
Immersive Audio Media and Formats (IAMF), also known as Eclipsa Audio, is an open-source audio container developed to accommodate multichannel and scene-based audio formats. Headphone-based delivery of IAMF audio requires efficient binaural rendering. This paper introduces the Open Binaural Renderer (OBR), which is designed to render IAMF audio. It discusses the core rendering algorithm, the binaural filter design process as well as real-time implementation of the renderer in a form of an open-source C++ rendering library. Designed for
multi-platform compatibility, the renderer incorporates a novel approach to binaural audio processing, leveraging a combination of spherical harmonic (SH) based virtual listening room model and anechoic binaural filters. Through its design, the IAMF binaural renderer provides a robust solution for delivering high-quality immersive audio across diverse platforms and applications.
View details