Natural Language Processing

Natural Language Processing (NLP) research at Google focuses on algorithms that apply at scale, across languages, and across domains. Our systems are used in numerous ways across Google, impacting user experience in search, mobile, apps, ads, translate and more.

Our work spans the range of traditional NLP tasks, with general-purpose syntax and semantic algorithms underpinning more specialized systems. We are particularly interested in algorithms that scale well and can be run efficiently in a highly distributed environment.

Our syntactic systems predict part-of-speech tags for each word in a given sentence, as well as morphological features such as gender and number. They also label relationships between words, such as subject, object, modification, and others. We focus on efficient algorithms that leverage large amounts of unlabeled data, and recently have incorporated neural net technology.

On the semantic side, we identify entities in free text, label them with types (such as person, location, or organization), cluster mentions of those entities within and across documents (coreference resolution), and resolve the entities to the Knowledge Graph.

Recent work has focused on incorporating multiple sources of knowledge and information to aid with analysis of text, as well as applying frame semantics at the noun phrase, sentence, and document level.

Recent Publications

Preview abstract Embeddings have become a pivotal means to represent complex, multi-faceted information about entities, concepts, and relationships in a condensed and useful format. Nevertheless, they often preclude direct interpretation. While downstream tasks make use of these compressed representations, meaningful interpretation usually requires visualization using dimensionality reduction or specialized machine learning interpretability methods. This paper addresses the challenge of making such embeddings more interpretable and broadly useful, by employing large language models (LLMs) to directly interact with embeddings -- transforming abstract vectors into understandable narratives. By injecting embeddings into LLMs, we enable querying and exploration of complex embedding data. We demonstrate our approach on a variety of diverse tasks, including: enhancing concept activation vectors (CAVs), communicating novel embedded entities, and decoding user preferences in recommender systems. Our work couples the immense information potential of embeddings with the interpretative power of LLMs. View details
Conformal Language Modeling
Victor Quach
Adam Fisch
Adam Yala
Jae Ho Sohn
Tommi Jaakkola
Regina Barzilay
ICLR (2024)
Preview abstract In this paper, we propose a novel approach to conformal prediction (CP) that is adapted to generative, large language models (LLMs). Conformal prediction is a popular technique for deriving prediction sets from machine learning models that have rigorous, statistical performance guarantees. We extend conformal techniques to a broad class of language models that sample from a conditional distribution over the combinatorial, unbounded space of possible text outputs, given some input prompt. Specifically, we translate the process of constructing prediction sets into calibrating a \emph{stopping rule}, under which we draw diverse samples from our model until we are confident that the growing set of candidate answers includes at least one high-quality response. At the same time, we calibrate a \emph{rejection rule} to selectively discard low-quality or redundant responses to reduce sample noise. Under minimal assumptions, we theoretically prove that our resulting output sets contain at least one high-quality answer with some desired probability that a user can set (such as $90\%$), while still remaining empirically precise on average. Furthermore, within this set of sampled candidate answers, we show that we can also accurately identify subsets of individual components (e.g., phrases or sentences) that are each independently correct (e.g., that are not ``hallucinations'')---again, with provably high probability. We demonstrate the effectiveness of our approach on multiple types of large language models applied to tasks in open-domain question answering, text summarization, and radiology report generation. View details
Preview abstract Sequence labeling is a core task in text understanding for IE/IR systems. Text generation models have increasingly become the go-to solution for such tasks (e.g., entity extraction and dialog slot filling). While most research has focused on the labeling accuracy, a key aspect -- of vital practical importance -- has slipped through the cracks: understanding model confidence. More specifically, we lack a principled understanding of how to reliably gauge the confidence of a model in its predictions for each labeled span. This paper aims to provide some empirical insights on estimating model confidence for generative sequence labeling. Most notably, we find that simply using the decoder's output probabilities is not the best in realizing well-calibrated confidence estimates. As verified over six public datasets of different tasks, we show that our proposed approach -- which leverages statistics from top-k predictions by a beam search -- significantly reduces calibration errors of the predictions of a generative sequence labeling model. View details
Preview abstract End-to-end models for speech recognition and speech synthesis have many benefits, but we argue they also face a unique set of challenges not encountered in conventional multi-stage hybrid systems, which relied on the explicit injection of linguistic knowledge through resources such as phonemic dictionaries and verbalization grammars. These challenges include handling words with unusual grapheme-to-phoneme correspondences, converting between written forms like ‘12’ and spoken forms such as ‘twelve’, and contextual disambiguation of homophones or homographs. We describe the mitigation strategies that have been used for these problems in end-to-end systems, either implicitly or explicitly, and call out that the most commonly used mitigation techniques are likely incompatible with newly emerging approaches that use minimal amounts of supervised audio training data. We review best-of-both-world approaches that allow the use of end-to-end models combined with traditional linguistic resources, which we show are increasingly straightforward to create at scale, and close with an optimistic outlook for bringing speech technologies to many more languages by combining these strands of research. View details
Preview abstract As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses. View details
Preview abstract Prompting and in-context learning (ICL) have become efficient learning paradigms for large language models (LLMs). However, LLMs suffer from prompt brittleness and various bias factors in the prompt, including but not limited to the formatting, the choice verbalizers, and the ICL examples. To address this problem that results in unexpected performance degradation, calibration methods have been developed to mitigate the effects of these biases while recovering LLM performance. In this work, we first conduct a systematic analysis of the existing calibration methods, where we both provide a unified view and reveal the failure cases. Inspired by these analyses, we propose Batch Calibration (BC), a simple yet intuitive method that controls the contextual bias from the batched input, unifies various prior approaches, and effectively addresses the aforementioned issues. BC is zero-shot, inference-only, and incurs negligible additional costs. In the few-shot setup, we further extend BC to allow it to learn the contextual bias from labeled data. We validate the effectiveness of BC with PaLM 2-(S, M, L) and CLIP models and demonstrate state-of-the-art performance over previous calibration baselines across more than 10 natural language understanding and image classification tasks. View details