Christopher Semturs
Christopher is a Research Lead at Google Health, working on AI projects to improve Health Outcomes, advancing research in Generative AI, Large Language Models, and Medical Imaging.
Born and raised in Austria, Christopher earned his MS in computer science at Technical University of Vienna. He joined Google in 2007 in the Zurich, Switzerland, office, and then moved to the United States in 2018 to join Google Health Research, where his team of engineers explores technology solutions for improving access to healthcare and healthcare information.
His work at Google Health allows him to be a part of the journey toward healthcare equity for all populations.
Authored Publications
Sort By
Towards Generalist Biomedical AI
Danny Driess
Andrew Carroll
Chuck Lau
Ryutaro Tanno
Ira Ktena
Anil Palepu
Basil Mustafa
Aakanksha Chowdhery
Simon Kornblith
Philip Mansfield
Sushant Prakash
Renee Wong
Sunny Virmani
Sara Mahdavi
Bradley Green
Ewa Dominowska
Joelle Barral
Karan Singhal
Pete Florence
NEJM AI (2024)
Preview abstract
BACKGROUND: Medicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery.
METHODS: To catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports.
RESULTS: We observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility.
CONCLUSIONS: Although considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems.
View details
A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models
Heather Cole-Lewis
Nenad Tomašev
Liam McCoy
Leo Anthony Celi
Alanna Walton
Akeiylah DeWitt
Philip Mansfield
Sushant Prakash
Joelle Barral
Ivor Horn
Karan Singhal
Nature Medicine (2024)
Preview abstract
Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and our dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed by narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an artificial intelligence (AI) system promotes equitable health outcomes, we hope that it can be leveraged and built upon toward a shared goal of LLMs that promote accessible and equitable healthcare.
View details
Health equity assessment of machine learning performance (HEAL): a framework and dermatology AI model case study
Terry Spitz
Malcolm Chelliah
Heather Cole-Lewis
Stephanie Farquhar
Qinghan Xue
Jenna Lester
Cían Hughes
Patricia Strachan
Fraser Tan
Peggy Bui
Craig Mermel
Lily Peng
Sunny Virmani
Ivor Horn
Cameron Chen
The Lancet eClinicalMedicine (2024)
Preview abstract
Background
Artificial intelligence (AI) has repeatedly been shown to encode historical inequities in healthcare. We aimed to develop a framework to quantitatively assess the performance equity of health AI technologies and to illustrate its utility via a case study.
Methods
Here, we propose a methodology to assess whether health AI technologies prioritise performance for patient populations experiencing worse outcomes, that is complementary to existing fairness metrics. We developed the Health Equity Assessment of machine Learning performance (HEAL) framework designed to quantitatively assess the performance equity of health AI technologies via a four-step interdisciplinary process to understand and quantify domain-specific criteria, and the resulting HEAL metric. As an illustrative case study (analysis conducted between October 2022 and January 2023), we applied the HEAL framework to a dermatology AI model. A set of 5420 teledermatology cases (store-and-forward cases from patients of 20 years or older, submitted from primary care providers in the USA and skin cancer clinics in Australia), enriched for diversity in age, sex and race/ethnicity, was used to retrospectively evaluate the AI model's HEAL metric, defined as the likelihood that the AI model performs better for subpopulations with worse average health outcomes as compared to others. The likelihood that AI performance was anticorrelated to pre-existing health outcomes was estimated using bootstrap methods as the probability that the negated Spearman's rank correlation coefficient (i.e., “R”) was greater than zero. Positive values of R suggest that subpopulations with poorer health outcomes have better AI model performance. Thus, the HEAL metric, defined as p (R >0), measures how likely the AI technology is to prioritise performance for subpopulations with worse average health outcomes as compared to others (presented as a percentage below). Health outcomes were quantified as disability-adjusted life years (DALYs) when grouping by sex and age, and years of life lost (YLLs) when grouping by race/ethnicity. AI performance was measured as top-3 agreement with the reference diagnosis from a panel of 3 dermatologists per case.
Findings
Across all dermatologic conditions, the HEAL metric was 80.5% for prioritizing AI performance of racial/ethnic subpopulations based on YLLs, and 92.1% and 0.0% respectively for prioritizing AI performance of sex and age subpopulations based on DALYs. Certain dermatologic conditions were significantly associated with greater AI model performance compared to a reference category of less common conditions. For skin cancer conditions, the HEAL metric was 73.8% for prioritizing AI performance of age subpopulations based on DALYs.
Interpretation
Analysis using the proposed HEAL framework showed that the dermatology AI model prioritised performance for race/ethnicity, sex (all conditions) and age (cancer conditions) subpopulations with respect to pre-existing health disparities. More work is needed to investigate ways of promoting equitable AI performance across age for non-cancer conditions and to better understand how AI models can contribute towards improving equity in health outcomes.
View details
Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements
Abbi Ward
Jimmy Li
Julie Wang
Sriram Lakshminarasimhan
Ashley Carrick
Jay Hartford
Pradeep Kumar S
Sunny Virmani
Renee Wong
Margaret Ann Smith
Dawn Siegel
Steven Lin
Justin Ko
JAMA Network Open (2024)
Preview abstract
Importance: Health datasets from clinical sources do not reflect the breadth and diversity of disease, impacting research, medical education, and artificial intelligence tool development. Assessments of novel crowdsourcing methods to create health datasets are needed.
Objective: To evaluate if web search advertisements (ads) are effective at creating a diverse and representative dermatology image dataset.
Design, Setting, and Participants: This prospective observational survey study, conducted from March to November 2023, used Google Search ads to invite internet users in the US to contribute images of dermatology conditions with demographic and symptom information to the Skin Condition Image Network (SCIN) open access dataset. Ads were displayed against dermatology-related search queries on mobile devices, inviting contributions from adults after a digital informed consent process. Contributions were filtered for image safety and measures were taken to protect privacy. Data analysis occurred January to February 2024.
Exposure: Dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and estimated Monk Skin Tone (eMST) labels.
Main Outcomes and Measures: The primary metrics of interest were the number, quality, demographic diversity, and distribution of clinical conditions in the crowdsourced contributions. Spearman rank order correlation was used for all correlation analyses, and the χ2 test was used to analyze differences between SCIN contributor demographics and the US census.
Results: In total, 5749 submissions were received, with a median of 22 (14-30) per day. Of these, 5631 (97.9%) were genuine images of dermatological conditions. Among contributors with self-reported demographic information, female contributors (1732 of 2596 contributors [66.7%]) and younger contributors (1329 of 2556 contributors [52.0%] aged <40 years) had a higher representation in the dataset compared with the US population. Of 2614 contributors who reported race and ethnicity, 852 (32.6%) reported a racial or ethnic identity other than White. Dermatologist confidence in assigning a differential diagnosis increased with the number of self-reported demographic and skin-condition–related variables (Spearman R = 0.1537; P < .001). Of 4019 contributions reporting duration since onset, 2170 (54.0%) reported onset within less than 7 days of submission. Of the 2835 contributions that could be assigned a dermatological differential diagnosis, 2523 (89.0%) were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset.
Conclusions and Relevance: The findings of this survey study suggest that search ads are effective at crowdsourcing dermatology images and could therefore be a useful method to create health datasets. The SCIN dataset bridges important gaps in the availability of images of common, short-duration skin conditions.
View details
Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
Brenna Li
Amy Wang
Patricia Strachan
Julie Anne Seguin
Sami Lachgar
Karyn Schroeder
Renee Wong
Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
Preview abstract
Although skin concerns are common, access to specialist care is limited. Artificial intelligence (AI)-assisted tools to support medical decisions may provide patients with feedback on their concerns while also helping ensure the most urgent cases are routed to dermatologists. Although AI-based conversational agents have been explored recently, how they are perceived by patients and clinicians is not well understood. We conducted a Wizard-of-Oz study involving 18 participants with real skin concerns. Participants were randomly assigned to interact with either a clinician agent (portrayed by a dermatologist) or an LLM agent (supervised by a dermatologist) via synchronous multimodal chat. In both conditions, participants found the conversation to be helpful in understanding their medical situation and alleviate their concerns. Through qualitative coding of the conversation transcripts, we provide insight on the importance of empathy and effective information-seeking. We conclude with design considerations for future AI-based conversational agents in healthcare settings.
View details
Towards Conversational Diagnostic AI
Anil Palepu
Khaled Saab
Jan Freyberg
Ryutaro Tanno
Amy Wang
Brenna Li
Nenad Tomašev
Karan Singhal
Le Hou
Albert Webson
Kavita Kulkarni
Sara Mahdavi
Juro Gottweis
Joelle Barral
Kat Chou
Arxiv (2024) (to appear)
Preview abstract
At the heart of medicine lies the physician-patient dialogue, where skillful history-taking paves the way for accurate diagnosis, effective management, and enduring trust. Artificial Intelligence (AI) systems capable of diagnostic dialogue could increase accessibility, consistency, and quality of care. However, approximating clinicians' expertise is an outstanding grand challenge. Here, we introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue.
AMIE uses a novel self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions, specialties, and contexts. We designed a framework for evaluating clinically-meaningful axes of performance including history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy. We compared AMIE's performance to that of primary care physicians (PCPs) in a randomized, double-blind crossover study of text-based consultations with validated patient actors in the style of an Objective Structured Clinical Examination (OSCE). The study included 149 case scenarios from clinical providers in Canada, the UK, and India, 20 PCPs for comparison with AMIE, and evaluations by specialist physicians and patient actors. AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors. Our research has several limitations and should be interpreted with appropriate caution. Clinicians were limited to unfamiliar synchronous text-chat which permits large-scale LLM-patient interactions but is not representative of usual clinical practice. While further research is required before AMIE could be translated to real-world settings, the results represent a milestone towards conversational diagnostic AI.
View details
Large Language Models Encode Clinical Knowledge
Karan Singhal
Sara Mahdavi
Jason Wei
Hyung Won Chung
Nathan Scales
Ajay Tanwani
Heather Cole-Lewis
Perry Payne
Martin Seneviratne
Paul Gamble
Christopher Kelly
Abubakr Abdelrazig Hassan Babiker
Nathanael Schaerli
Aakanksha Chowdhery
Philip Mansfield
Dina Demner-Fushman
Katherine Chou
Juraj Gottweis
Nenad Tomašev
Alvin Rajkomar
Joelle Barral
Nature (2023)
Preview abstract
Large language models (LLMs) have demonstrated impressive capabilities, but the bar for clinical applications is high. Attempts to assess the clinical knowledge of models typically rely on automated evaluations based on limited benchmarks. Here, to address these limitations, we present MultiMedQA, a benchmark combining six existing medical question answering datasets spanning professional medicine, research and consumer queries and a new dataset of medical questions searched online, HealthSearchQA. We propose a human evaluation framework for model answers along multiple axes including factuality, comprehension, reasoning, possible harm and bias. In addition, we evaluate Pathways Language Model (PaLM, a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA and Measuring Massive Multitask Language Understanding (MMLU) clinical topics), including 67.6% accuracy on MedQA (US Medical Licensing Exam-style questions), surpassing the prior state of the art by more than 17%. However, human evaluation reveals key gaps. To resolve this, we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, knowledge recall and reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal limitations of today’s models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLMs for clinical applications.
View details
Towards Accurate Differential Diagnosis with Large Language Models
Daniel McDuff
Anil Palepu
Amy Wang
Karan Singhal
Yash Sharma
Kavita Kulkarni
Le Hou
Sara Mahdavi
Sushant Prakash
Anupam Pathak
Shwetak Patel
Ewa Dominowska
Juro Gottweis
Joelle Barral
Kat Chou
Jake Sunshine
Arxiv (2023)
Preview abstract
An accurate differential diagnosis (DDx) is a cornerstone of medical care, often reached through an iterative process of interpretation that combines clinical history, physical examination, investigations and procedures. Interactive interfaces powered by Large Language Models (LLMs) present new opportunities to both assist and automate aspects of this process. In this study, we introduce an LLM optimized for diagnostic reasoning, and evaluate its ability to generate a DDx alone or as an aid to clinicians. 20 clinicians evaluated 302 challenging, real-world medical cases sourced from the New England Journal of Medicine (NEJM) case reports. Each case report was read by two clinicians, who were randomized to one of two assistive conditions: either assistance from search engines and standard medical resources, or LLM assistance in addition to these tools. All clinicians provided a baseline, unassisted DDx prior to using the respective assistive tools. Our LLM for DDx exhibited standalone performance that exceeded that of unassisted clinicians (top-10 accuracy 59.1% vs 33.6%, [p = 0.04]). Comparing the two assisted study arms, the DDx quality score was higher for clinicians assisted by our LLM (top-10 accuracy 51.7%) compared to clinicians without its assistance (36.1%) (McNemar's Test: 45.7, p < 0.01) and clinicians with search (44.4%) (4.75, p = 0.03). Further, clinicians assisted by our LLM arrived at more comprehensive differential lists than those without its assistance. Our study suggests that our LLM for DDx has potential to improve clinicians' diagnostic reasoning and accuracy in challenging cases, meriting further real-world evaluation for its ability to empower physicians and widen patients' access to specialist-level expertise.
View details
A deep learning model for novel systemic biomarkers in photographs of the external eye: a retrospective study
Ilana Traynis
Christina Chen
Akib Uddin
Jorge Cuadros
Lauren P. Daskivich
April Y. Maa
Ramasamy Kim
Eugene Yu-Chuan Kang
Lily Peng
Avinash Varadarajan
The Lancet Digital Health (2023)
Preview abstract
Background
Photographs of the external eye were recently shown to reveal signs of diabetic retinal disease and elevated glycated haemoglobin. This study aimed to test the hypothesis that external eye photographs contain information about additional systemic medical conditions.
Methods
We developed a deep learning system (DLS) that takes external eye photographs as input and predicts systemic parameters, such as those related to the liver (albumin, aspartate aminotransferase [AST]); kidney (estimated glomerular filtration rate [eGFR], urine albumin-to-creatinine ratio [ACR]); bone or mineral (calcium); thyroid (thyroid stimulating hormone); and blood (haemoglobin, white blood cells [WBC], platelets). This DLS was trained using 123 130 images from 38 398 patients with diabetes undergoing diabetic eye screening in 11 sites across Los Angeles county, CA, USA. Evaluation focused on nine prespecified systemic parameters and leveraged three validation sets (A, B, C) spanning 25 510 patients with and without diabetes undergoing eye screening in three independent sites in Los Angeles county, CA, and the greater Atlanta area, GA, USA. We compared performance against baseline models incorporating available clinicodemographic variables (eg, age, sex, race and ethnicity, years with diabetes).
Findings
Relative to the baseline, the DLS achieved statistically significant superior performance at detecting AST >36.0 U/L, calcium <8.6 mg/dL, eGFR <60.0 mL/min/1.73 m2, haemoglobin <11.0 g/dL, platelets <150.0 × 103/μL, ACR ≥300 mg/g, and WBC <4.0 × 103/μL on validation set A (a population resembling the development datasets), with the area under the receiver operating characteristic curve (AUC) of the DLS exceeding that of the baseline by 5.3–19.9% (absolute differences in AUC). On validation sets B and C, with substantial patient population differences compared with the development datasets, the DLS outperformed the baseline for ACR ≥300.0 mg/g and haemoglobin <11.0 g/dL by 7.3–13.2%.
Interpretation
We found further evidence that external eye photographs contain biomarkers spanning multiple organ systems. Such biomarkers could enable accessible and non-invasive screening of disease. Further work is needed to understand the translational implications.
View details
Towards Physician-Level Medical Question Answering with Large Language Models
Karan Singhal
Juro Gottweis
Le Hou
Kevin Clark
Heather Cole-Lewis
Amy Wang
Sami Lachgar
Philip Mansfield
Sushant Prakash
Bradley Green
Ewa Dominowska
Nenad Tomašev
Renee Wong
Sara Mahdavi
Joelle Barral
Arxiv (2023) (to appear)
Preview abstract
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge.
Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach.
Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets.
We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations.
While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
View details