Dale Webster

Dale Webster

Dale Webster is Director of Research at Google Health working to improve patient outcomes in healthcare using Deep Learning and Medical Imaging. His recent work leverages AI to screen for Diabetic Retinopathy in India and Thailand, predict Cardiovascular health factors from fundus photos, differential diagnosis of skin disease, and applications of medically tuned LLMs. Prior to Google he was a Software Engineer at Pacific Biosciences working on direct sequencing of methylation state and rapid sequencing and assembly of microbial pathogens during global outbreaks. His PhD work in Bioinformatics at the University of California San Francisco focused on viral evolution, and he received his Bachelor of Science in Computer Science from Rice University.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
    Brenna Li
    Amy Wang
    Patricia Strachan
    Julie Anne Seguin
    Sami Lachgar
    Karyn Schroeder
    Renee Wong
    Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
    Preview abstract Although skin concerns are common, access to specialist care is limited. Artificial intelligence (AI)-assisted tools to support medical decisions may provide patients with feedback on their concerns while also helping ensure the most urgent cases are routed to dermatologists. Although AI-based conversational agents have been explored recently, how they are perceived by patients and clinicians is not well understood. We conducted a Wizard-of-Oz study involving 18 participants with real skin concerns. Participants were randomly assigned to interact with either a clinician agent (portrayed by a dermatologist) or an LLM agent (supervised by a dermatologist) via synchronous multimodal chat. In both conditions, participants found the conversation to be helpful in understanding their medical situation and alleviate their concerns. Through qualitative coding of the conversation transcripts, we provide insight on the importance of empathy and effective information-seeking. We conclude with design considerations for future AI-based conversational agents in healthcare settings. View details
    Preview abstract Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components—GPPEs—from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended. View details
    Differences between Patient and Clinician Submitted Images: Implications for Virtual Care of Skin Conditions
    Rajeev Rikhye
    Grace Eunhae Hong
    Margaret Ann Smith
    Aaron Loh
    Vijaytha Muralidharan
    Doris Wong
    Michelle Phung
    Nicolas Betancourt
    Bradley Fong
    Rachna Sahasrabudhe
    Khoban Nasim
    Alec Eschholz
    Kat Chou
    Peggy Bui
    Justin Ko
    Steven Lin
    Mayo Clinic Proceedings: Digital Health (2024)
    Preview abstract Objective: To understand and highlight the differences in clinical, demographic, and image quality characteristics between patient-taken (PAT) and clinic-taken (CLIN) photographs of skin conditions. Patients and Methods: This retrospective study applied logistic regression to data from 2500 deidentified cases in Stanford Health Care’s eConsult system, from November 2015 to January 2021. Cases with undiagnosable or multiple conditions or cases with both patient and clinician image sources were excluded, leaving 628 PAT cases and 1719 CLIN cases. Demographic characteristic factors, such as age and sex were self-reported, whereas anatomic location, estimated skin type, clinical signs and symptoms, condition duration, and condition frequency were summarized from patient health records. Image quality variables such as blur, lighting issues and whether the image contained skin, hair, or nails were estimated through a deep learning model. Results: Factors that were positively associated with CLIN photographs, post-2020 were as follows: age 60 years or older, darker skin types (eFST V/VI), and presence of skin growths. By contrast, factors that were positively associated with PAT photographs include conditions appearing intermittently, cases with blurry photographs, photographs with substantial nonskin (or nail/hair) regions and cases with more than 3 photographs. Within the PAT cohort, older age was associated with blurry photographs. Conclusion: There are various demographic, clinical, and image quality characteristic differences between PAT and CLIN photographs of skin concerns. The demographic characteristic differences present important considerations for improving digital literacy or access, whereas the image quality differences point to the need for improved patient education and better image capture workflows, particularly among elderly patients. View details
    Health equity assessment of machine learning performance (HEAL): a framework and dermatology AI model case study
    Terry Spitz
    Malcolm Chelliah
    Heather Cole-Lewis
    Stephanie Farquhar
    Qinghan Xue
    Jenna Lester
    Cían Hughes
    Patricia Strachan
    Fraser Tan
    Peggy Bui
    Craig Mermel
    Lily Peng
    Sunny Virmani
    Ivor Horn
    Cameron Chen
    The Lancet eClinicalMedicine (2024)
    Preview abstract Background Artificial intelligence (AI) has repeatedly been shown to encode historical inequities in healthcare. We aimed to develop a framework to quantitatively assess the performance equity of health AI technologies and to illustrate its utility via a case study. Methods Here, we propose a methodology to assess whether health AI technologies prioritise performance for patient populations experiencing worse outcomes, that is complementary to existing fairness metrics. We developed the Health Equity Assessment of machine Learning performance (HEAL) framework designed to quantitatively assess the performance equity of health AI technologies via a four-step interdisciplinary process to understand and quantify domain-specific criteria, and the resulting HEAL metric. As an illustrative case study (analysis conducted between October 2022 and January 2023), we applied the HEAL framework to a dermatology AI model. A set of 5420 teledermatology cases (store-and-forward cases from patients of 20 years or older, submitted from primary care providers in the USA and skin cancer clinics in Australia), enriched for diversity in age, sex and race/ethnicity, was used to retrospectively evaluate the AI model's HEAL metric, defined as the likelihood that the AI model performs better for subpopulations with worse average health outcomes as compared to others. The likelihood that AI performance was anticorrelated to pre-existing health outcomes was estimated using bootstrap methods as the probability that the negated Spearman's rank correlation coefficient (i.e., “R”) was greater than zero. Positive values of R suggest that subpopulations with poorer health outcomes have better AI model performance. Thus, the HEAL metric, defined as p (R >0), measures how likely the AI technology is to prioritise performance for subpopulations with worse average health outcomes as compared to others (presented as a percentage below). Health outcomes were quantified as disability-adjusted life years (DALYs) when grouping by sex and age, and years of life lost (YLLs) when grouping by race/ethnicity. AI performance was measured as top-3 agreement with the reference diagnosis from a panel of 3 dermatologists per case. Findings Across all dermatologic conditions, the HEAL metric was 80.5% for prioritizing AI performance of racial/ethnic subpopulations based on YLLs, and 92.1% and 0.0% respectively for prioritizing AI performance of sex and age subpopulations based on DALYs. Certain dermatologic conditions were significantly associated with greater AI model performance compared to a reference category of less common conditions. For skin cancer conditions, the HEAL metric was 73.8% for prioritizing AI performance of age subpopulations based on DALYs. Interpretation Analysis using the proposed HEAL framework showed that the dermatology AI model prioritised performance for race/ethnicity, sex (all conditions) and age (cancer conditions) subpopulations with respect to pre-existing health disparities. More work is needed to investigate ways of promoting equitable AI performance across age for non-cancer conditions and to better understand how AI models can contribute towards improving equity in health outcomes. View details
    Preview abstract Background Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods We used Google Search advertisements to solicit contributions of images of dermatology conditions, demographic and symptom information from internet users in the United States (US) over 265 days starting March 2023. With informed contributor consent, we described and released this dataset containing 10,106 images from 5058 contributions, with dermatologist labels as well as Fitzpatrick Skin Type and Monk Skin Tone labels for the images. Results We received 22 ± 14 submissions/day over 265 days. Female contributors (66.04%) and younger individuals (52.3% < age 40) had a higher representation in the dataset compared to the US population, and 36.6% of contributors had a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Image quality had no impact on dermatologist confidence in assigning a differential diagnosis. The dataset consists largely of short duration (54% with onset < 7 days ago) allergic, infectious, and inflammatory conditions. Fitzpatrick skin type distribution is well-balanced, considering the geographical origin of the dataset and the absence of enrichment for population groups or skin tones. Interpretation Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions. View details
    Towards Generalist Biomedical AI
    Danny Driess
    Andrew Carroll
    Chuck Lau
    Ryutaro Tanno
    Ira Ktena
    Anil Palepu
    Basil Mustafa
    Aakanksha Chowdhery
    Simon Kornblith
    Philip Mansfield
    Sushant Prakash
    Renee Wong
    Sunny Virmani
    Sara Mahdavi
    Bradley Green
    Ewa Dominowska
    Joelle Barral
    Karan Singhal
    Pete Florence
    NEJM AI (2024)
    Preview abstract BACKGROUND: Medicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery. METHODS: To catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports. RESULTS: We observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility. CONCLUSIONS: Although considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems. View details
    Preview abstract Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering. View details
    Preview abstract The application of an artificial intelligence (AI)-based screening tool for retinal disease in India and Thailand highlighted the myths and reality of introducing medical AI, which may form a framework for subsequent tools. View details
    A deep learning model for novel systemic biomarkers in photographs of the external eye: a retrospective study
    Ilana Traynis
    Christina Chen
    Akib Uddin
    Jorge Cuadros
    Lauren P. Daskivich
    April Y. Maa
    Ramasamy Kim
    Eugene Yu-Chuan Kang
    Lily Peng
    Avinash Varadarajan
    The Lancet Digital Health (2023)
    Preview abstract Background Photographs of the external eye were recently shown to reveal signs of diabetic retinal disease and elevated glycated haemoglobin. This study aimed to test the hypothesis that external eye photographs contain information about additional systemic medical conditions. Methods We developed a deep learning system (DLS) that takes external eye photographs as input and predicts systemic parameters, such as those related to the liver (albumin, aspartate aminotransferase [AST]); kidney (estimated glomerular filtration rate [eGFR], urine albumin-to-creatinine ratio [ACR]); bone or mineral (calcium); thyroid (thyroid stimulating hormone); and blood (haemoglobin, white blood cells [WBC], platelets). This DLS was trained using 123 130 images from 38 398 patients with diabetes undergoing diabetic eye screening in 11 sites across Los Angeles county, CA, USA. Evaluation focused on nine prespecified systemic parameters and leveraged three validation sets (A, B, C) spanning 25 510 patients with and without diabetes undergoing eye screening in three independent sites in Los Angeles county, CA, and the greater Atlanta area, GA, USA. We compared performance against baseline models incorporating available clinicodemographic variables (eg, age, sex, race and ethnicity, years with diabetes). Findings Relative to the baseline, the DLS achieved statistically significant superior performance at detecting AST >36.0 U/L, calcium <8.6 mg/dL, eGFR <60.0 mL/min/1.73 m2, haemoglobin <11.0 g/dL, platelets <150.0 × 103/μL, ACR ≥300 mg/g, and WBC <4.0 × 103/μL on validation set A (a population resembling the development datasets), with the area under the receiver operating characteristic curve (AUC) of the DLS exceeding that of the baseline by 5.3–19.9% (absolute differences in AUC). On validation sets B and C, with substantial patient population differences compared with the development datasets, the DLS outperformed the baseline for ACR ≥300.0 mg/g and haemoglobin <11.0 g/dL by 7.3–13.2%. Interpretation We found further evidence that external eye photographs contain biomarkers spanning multiple organ systems. Such biomarkers could enable accessible and non-invasive screening of disease. Further work is needed to understand the translational implications. View details
    Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
    Laura Anne Culp
    Jan Freyberg
    Basil Mustafa
    Sebastien Baur
    Simon Kornblith
    Ting Chen
    Patricia MacWilliams
    Sara Mahdavi
    Megan Zoë Walker
    Aaron Loh
    Cameron Chen
    Scott Mayer McKinney
    Jim Winkens
    Zach William Beaver
    Fiona Keleher Ryan
    Mozziyar Etemadi
    Umesh Telang
    Lily Hao Yi Peng
    Geoffrey Everest Hinton
    Neil Houlsby
    Mohammad Norouzi
    Nature Biomedical Engineering (2023)
    Preview abstract Machine-learning models for medical tasks can match or surpass the performance of clinical experts. However, in settings differing from those of the training dataset, the performance of a model can deteriorate substantially. Here we report a representation-learning strategy for machine-learning models applied to medical-imaging tasks that mitigates such ‘out of distribution’ performance problem and that improves model robustness and training efficiency. The strategy, which we named REMEDIS (for ‘Robust and Efficient Medical Imaging with Self-supervision’), combines large-scale supervised transfer learning on natural images and intermediate contrastive self-supervised learning on medical images and requires minimal task-specific customization. We show the utility of REMEDIS in a range of diagnostic-imaging tasks covering six imaging domains and 15 test datasets, and by simulating three realistic out-of-distribution scenarios. REMEDIS improved in-distribution diagnostic accuracies up to 11.5% with respect to strong supervised baseline models, and in out-of-distribution settings required only 1–33% of the data for retraining to match the performance of supervised models retrained using all available data. REMEDIS may accelerate the development lifecycle of machine-learning models for medical imaging. View details