Machine Intelligence

Google is at the forefront of innovation in Machine Intelligence, with active research exploring virtually all aspects of machine learning, including deep learning and more classical algorithms. Exploring theory as well as application, much of our work on language, speech, translation, visual processing, ranking and prediction relies on Machine Intelligence. In all of those tasks and many others, we gather large volumes of direct or indirect evidence of relationships of interest, applying learning algorithms to understand and generalize.

Machine Intelligence at Google raises deep scientific and engineering challenges, allowing us to contribute to the broader academic research community through technical talks and publications in major conferences and journals. Contrary to much of current theory and practice, the statistics of the data we observe shifts rapidly, the features of interest change as well, and the volume of data often requires enormous computation capacity. When learning systems are placed at the core of interactive services in a fast changing and sometimes adversarial environment, combinations of techniques including deep learning and statistical models need to be combined with ideas from control and game theory.

Recent Publications

Multimodal Web Navigation with Instruction-Finetuned Foundation Models
Hiroki Furuta
Ofir Nachum
Yutaka Matsuo
Shane Gu
Izzeddin Gur
International Conference on Learning Representations (ICLR)(2024)
Preview abstract The progress of autonomous web navigation has been hindered by the dependence on billions of exploratory interactions via online reinforcement learning, and domain-specific model designs that make it difficult to leverage generalization from rich out-of-domain data. In this work, we study data-driven offline training for web agents with vision-language foundation models. We propose an instruction-following multimodal agent, WebGUM, that observes both webpage screenshots and HTML pages and outputs web navigation actions, such as click and type. WebGUM is trained by jointly finetuning an instruction-finetuned language model and a vision encoder with temporal and local perception on a large corpus of demonstrations. We empirically demonstrate this recipe improves the agent's ability of grounded multimodal perception, HTML comprehension, and multi-step reasoning, outperforming prior works by a significant margin. On the MiniWoB, we improve over the previous best offline methods by more than 45.8%, even outperforming online-finetuned SoTA, humans, and GPT-4-based agent. On the WebShop benchmark, our 3-billion-parameter model achieves superior performance to the existing SoTA, PaLM-540B. Furthermore, WebGUM exhibits strong positive transfer to the real-world planning tasks on the Mind2Web. We also collect 347K high-quality demonstrations using our trained models, 38 times larger than prior work, and make them available to promote future research in this direction. View details
Crowdsourcing Dermatology Images with Google Search Ads: Creating a Diverse and Representative Dataset of Real-World Skin Conditions
Abbi Ward
Ashley Carrick
Christopher Semturs
Dawn Siegel
Jay Hartford
Jimmy Li
Julie Wang
Justin Ko
Pradeep Kumar S
Renee Wong
Sriram Lakshminarasimhan
Steven Lin
Sunny Virmani
arXiv(2024)
Preview abstract Background Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods We used Google Search advertisements to solicit contributions of images of dermatology conditions, demographic and symptom information from internet users in the United States (US) over 265 days starting March 2023. With informed contributor consent, we described and released this dataset containing 10,106 images from 5058 contributions, with dermatologist labels as well as Fitzpatrick Skin Type and Monk Skin Tone labels for the images. Results We received 22 ± 14 submissions/day over 265 days. Female contributors (66.04%) and younger individuals (52.3% < age 40) had a higher representation in the dataset compared to the US population, and 36.6% of contributors had a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Image quality had no impact on dermatologist confidence in assigning a differential diagnosis. The dataset consists largely of short duration (54% with onset < 7 days ago) allergic, infectious, and inflammatory conditions. Fitzpatrick skin type distribution is well-balanced, considering the geographical origin of the dataset and the absence of enrichment for population groups or skin tones. Interpretation Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions. View details
Discovering Personalized Semantics for Soft Attributes in Recommender Systems using Concept Activation Vectors
Christina Göpfert
Alex Haig
Yinlam Chow
Ivan Vendrov
Tyler Lu
Hubert Pham
Mohammad Ghavamzadeh
ACM Transactions on Recommender Systems(2024)
Preview abstract Interactive recommender systems have emerged as a promising paradigm to overcome the limitations of the primitive user feedback used by traditional recommender systems (e.g., clicks, item consumption, ratings). They allow users to express intent, preferences, constraints, and contexts in a richer fashion, often using natural language (including faceted search and dialogue). Yet more research is needed to find the most effective ways to use this feedback. One challenge is inferring a user's semantic intent from the open-ended terms or attributes often used to describe a desired item, and using it to refine recommendation results. Leveraging concept activation vectors (CAVs) (Kim, et al., 2018) a recently developed approach for model interpretability in machine learning, we develop a framework to learn a representation that captures the semantics of such attributes and connects them to user preferences and behaviors in recommender systems. One novel feature of our approach is its ability to distinguish objective and subjective attributes (both subjectivity of degree and of sense), and associate different senses of subjective attributes with different users. We demonstrate on both synthetic and real-world data sets that our CAV representation not only accurately interprets users' subjective semantics, but can also be used to improve recommendations through interactive item critiquing. View details
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
The Twelfth International Conference on Learning Representations(2024)
Preview abstract A prominent challenge of offline reinforcement learning (RL) is the issue of hidden confounding. There, unobserved variables may influence both the actions taken by the agent and the outcomes observed in the data. Hidden confounding can compromise the validity of any causal conclusion drawn from the data and presents a major obstacle to effective offline RL. In this paper, we tackle the problem of hidden confounding in the nonidentifiable setting. We propose a definition of uncertainty due to confounding bias, termed delphic uncertainty, which uses variation over compatible world models, and differentiate it from the well known epistemic and aleatoric uncertainties. We derive a practical method for estimating the three types of uncertainties, and construct a pessimistic offline RL algorithm to account for them. Our method does not assume identifiability of the unobserved confounders, and attempts to reduce the amount of confounding bias. We demonstrate through extensive experiments and ablations the efficacy of our approach on a sepsis management benchmark, as well as real electronic health records. Our results suggest that nonidentifiable confounding bias can be addressed in practice to improve offline RL solutions. View details
Model-Free Preference Elicitation
Carlos Martin
Tuomas Sandholm
Ofer Meshi
Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI-24), Jeju, South Korea(2024) (to appear)
Preview abstract Elicitation of user preferences is becoming an important approach for improving the qualityof recommendations, especially when there is little or no user history. In this setting, arecommender system interacts with the user by iteratively presenting elicitation questionsand recording their responses. Various criteria have been proposed for optimizing thesequence of queries in order to improve user understanding and thereby the quality ofdownstream recommendations. A compelling approach for preference elicitation is theExpected Value of Information (EVOI), a Bayesian approach which computes the expectedgain in user utility for possible queries. Previous work on EVOI has focused on probabilisticmodels of users for computing posterior utilities. In contrast, in this work we exploremodel-free variants of EVOI which rely on function approximations in order to avoid strongmodeling assumptions. Specifically, we propose to learn a user response model and a userutility model from data which is often available in real-world systems, and to use thesemodels in EVOI in place of the probabilistic models. We show that our approach leads toimproved elicitation performance. View details
Understanding the Dataset Practitioners Behind Large Language Models
Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '24), ACM, Honolulu, HI, USA(2024)
Preview abstract As large language models (LLMs) become more advanced and impactful, it is increasingly important to scrutinize the data that they rely upon and produce. What is it to be a dataset practitioner doing this work? We approach this in two parts: first, we define the role of "dataset practitioners'' by performing a retrospective analysis on the responsibilities of teams contributing to LLM development at a technology company, Google. Then, we conduct semi-structured interviews with a cross-section of these practitioners (N=10). We find that although data quality is a top priority, there is little consensus around what data quality is and how to evaluate it. Consequently, practitioners either rely on their own intuition or write custom code to evaluate their data. We discuss potential reasons for this phenomenon and opportunities for alignment. View details