Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 3951 publications
InstructPipe: Building Visual Programming Pipelines in Visual Blocks with Human Instructions Using LLMs
Alex Olwal
Mark Sherwood
Jing Jin
Na Li
Jingtao Zhou
Jun Jiang
Ram Iyengar
Zhongyi Zhou
Yiyi Huang
Kristen Wright
Xiuxiu Yuan
Jason Mayes
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract
Visual programming provides beginner-level programmers with a coding-free experience to build their customized pipelines. Existing systems require users to build a pipeline entirely from scratch, implying that novice users need to set up and link appropriate nodes all by themselves, starting from a blank workspace. We present InstructPipe, an AI assistant that enables users to start prototyping machine learning (ML) pipelines with text instructions. We designed two LLM modules and a code interpreter to execute our solution. LLM modules generate pseudocode of a target pipeline, and the interpreter renders a pipeline in the node-graph editor for further human-AI collaboration. Technical evaluations reveal that InstructPipe reduces user interactions by 81.1% compared to traditional methods. Our user study (N=16) showed that InstructPipe empowers novice users to streamline their workflow in creating desired ML pipelines, reduce their learning curve, and spark innovative ideas with open-ended commands.
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Aman Raj
Marc Stogaitis
Youngmin Cho
Richard Allen
Patrick Robertson
Robert Bosch
Nivetha Thiruverahan
Alexei Barski
Tajinder Gadh
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Context is Key for Agent Security
Eugene Bagdasaryan
Lillian Tsai
arXiv (2025)
Preview abstract
Judging the safety of an action, whether taken by a human or a system, must take into account the context in which the action takes place. For example, deleting an email from a user's mailbox may or may not be appropriate depending on the email's content, the user's goals, or even available space. Systems today that make these judgements---providing security against harmful or inappropriate actions---rely on manually-crafted policies or user confirmation for each relevant context. With the upcoming deployment of systems like generalist agents, we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual security for agents (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
View details
Triaging mammography with artificial intelligence: an implementation study
Samantha Winter
Atilla Kiraly
Scott Mayer McKinney
Jie Yang
Krish Eswaran
Shravya Shetty
Timo Kohlberger
Stacey Caron
Fereshteh Mahvar
David Melnick
Sonya Bhole
Arnav Agharwal
David V. Schacht
Dipti Gupta
Basil Mustafa
Alejandra Maciel
Martha Sevenich
Sarah M. Friedewald
Mozziyar Etemadi
Sunny Jansen
Shiro Kadowaki
Gavin Duggan
Rubin Zhang
Luca Speroni
Breast Cancer Research and Treatment (2025)
Preview abstract
Purpose
Many breast centers are unable to provide immediate results at the time of screening mammography which results in delayed patient care. Implementing artificial intelligence (AI) could identify patients who may have breast cancer and accelerate the time to diagnostic imaging and biopsy diagnosis.
Methods
In this prospective randomized, unblinded, controlled implementation study we enrolled 1000 screening participants between March 2021 and May 2022. The experimental group used an AI system to prioritize a subset of cases for same-visit radiologist evaluation, and same-visit diagnostic workup if necessary. The control group followed the standard of care. The primary operational endpoints were time to additional imaging (TA) and time to biopsy diagnosis (TB).
Results
The final cohort included 463 experimental and 392 control participants. The one-sided Mann-Whitney U test was employed for analysis of TA and TB. In the control group, the TA was 25.6 days [95% CI 22.0–29.9] and TB was 55.9 days [95% CI 45.5–69.6]. In comparison, the experimental group's mean TA was reduced by 25% (6.4 fewer days [one-sided 95% CI > 0.3], p<0.001) and mean TB was reduced by 30% (16.8 fewer days; 95% CI > 5.1], p=0.003). The time reduction was more pronounced for AI-prioritized participants in the experimental group. All participants eventually diagnosed with breast cancer were prioritized by the AI.
Conclusions
Implementing AI prioritization can accelerate care timelines for patients requiring additional workup, while maintaining the efficiency of delayed interpretation for most participants. Reducing diagnostic delays could contribute to improved patient adherence, decreased anxiety and addressing disparities in access to timely care.
View details
TOKENFORMER: Rethinking Transformers Scaling with Tokenized Model Parameters
Jan Eric Lenssen
Haiyang Wang
Liwei Wang
Fan Yue
Bernt Schiele
2025
Preview abstract
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on fixed parameters within linear projections, especially when architectural modifications (e.g., channel dimensions) are introduced. Each scaling iteration typically requires retraining the entire model from the beginning, leading to suboptimal utilization of computational resources. To overcome this limitation, we introduce TokenFormer, a naturally scalable architecture that leverages the attention mechanism exclusively for computations among input tokens and interactions between input tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformer with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This innovative approach allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124 million to 1.4 billion parameters by incrementally adding new key-value parameters, achieving performance comparable to models trained from scratch while greatly reducing training costs. Code and models will be publicly available.
View details
MetaMix: Meta-state Precision Searcher for Mixed-precision Activation Quantization
Sungjoo Yoo
Han-Byul Kim
Joo Hyung Lee
Hong-Seok Kim
Proc. The 38th Annual AAAI Conference on Artificial Intelligence (AAAI) (2024)
Preview abstract
Mixed-precision quantization of efficient networks often suffer from activation instability encountered in the exploration of bit selections. To address this problem, we propose a novel method called MetaMix which consists of bit selection and weight training phases. The bit selection phase iterates two steps, (1) the mixed-precision-aware weight update, and (2) the bit-search training with the fixed mixed-precision-aware weights, both of which combined reduce activation instability in mixed-precision quantization and contribute to fast and high-quality bit selection. The weight training phase exploits the weights and step sizes trained in the bit selection phase and fine-tunes them thereby offering fast training. Our experiments with efficient and hard-to-quantize networks, i.e., MobileNet v2 and v3, and ResNet-18 on ImageNet show that our proposed method pushes the boundary of mixed-precision quantization, in terms of accuracy vs. operations, by outperforming both mixed- and single-precision SOTA methods.
View details
SPHEAR: Spherical Head Registration for Complete Statistical 3D Modeling
Mihai Zanfir
Andrei Zanfir
Teodor Szente
International Conference on 3D Vision (2024)
Preview abstract
We present SPHEAR, an accurate, differentiable parametric statistical 3D human head model, enabled by a novel 3D registration method based on spherical embeddings. We shift the paradigm away from the classical Non-Rigid Registration methods, which operate under various surface priors, increasing reconstruction fidelity and minimizing required human intervention. Additionally, SPHEAR is a complete model that allows not only to sample diverse synthetic head shapes and facial expressions, but also gaze directions, high-resolution color textures, surface normal maps, and hair cuts represented in detail, as strands. SPHEAR can be used for automatic realistic visual data generation, semantic annotation, and general reconstruction tasks. Compared to state-of-the-art approaches, our components are fast and memory efficient, and experiments support the validity of our design choices and the accuracy of registration, reconstruction and generation techniques.
View details
TextMesh: Generation of Realistic 3D Meshes From Text Prompts
Fabian Manhardt
Christina Tsalicoglou
Michael Niemeyer
3DV 2024 (2024)
Preview abstract
The ability to generate highly realistic 2D images from mere text prompts has recently made huge progress in terms of speed and quality, thanks to the advent of image diffusion models. Naturally, the question arises if this can be also achieved in the generation of 3D content from such text prompts. To this end, a new line of methods recently emerged trying to harness diffusion models, trained on 2D images, for supervision of 3D model generation using view dependent prompts. While achieving impressive results, these methods, however, have two major drawbacks. First, rather than commonly used 3D meshes, they instead generate neural radiance fields (NeRFs), making them impractical for most real applications. Second, these approaches tend to produce over-saturated models, giving the output a cartoonish looking effect. Therefore, in this work we propose a novel method for generation of highly realistic-looking 3D meshes. To this end, we extend NeRF to employ an SDF backbone, leading to improved 3D mesh extraction. In addition, we propose a novel way to finetune the mesh texture, removing the effect of high saturation and improving the details of the output 3D mesh.
View details
Preview abstract
We extend conformal prediction to control the expected value of any monotone loss function. The
algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal
prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from
computer vision and natural language processing demonstrate the usage of our algorithm to bound the
false negative rate, graph distance, and token-level F1-score.
View details
Using Early Readouts to Mediate Featural Bias in Distillation
Durga Sivasubramanian
Ganesh Ramakrishnan
Anmol Mekala
Rishabh Tiwari
WACV 2024 (2024)
Preview abstract
Deep networks tend to learn spurious feature-label correlations in real-world supervised learning tasks. This vulnerability is aggravated in distillation, where a (student) model may have less representational capacity than the corresponding teacher model. Often, knowledge of specific problem features is used to reweight instances & rebalance the learning process. We propose a novel early readout mechanism whereby we attempt to predict the label using representations from earlier network layers. We show that these early readouts automatically identify problem instances or groups in the form of confident, incorrect predictions. We improve group fairness measures across benchmark datasets by leveraging these signals to mediate between teacher logits and supervised label. We extend our results to the closely related but distinct problem of domain generalization, which also critically depends on the quality of learned features. We provide secondary analyses that bring insight into the role of feature learning in supervision and distillation.
View details
Towards Generalist Biomedical AI
Andrew Carroll
Karan Singhal
Pete Florence
Simon Kornblith
Aakanksha Chowdhery
Joelle Barral
Bradley Green
Ira Ktena
Ryutaro Tanno
Basil Mustafa
Anil Palepu
Philip Mansfield
Chuck Lau
Ewa Dominowska
Sushant Prakash
Sunny Virmani
Danny Driess
Renee Wong
Sara Mahdavi
NEJM AI (2024)
Preview abstract
BACKGROUND: Medicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery.
METHODS: To catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports.
RESULTS: We observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility.
CONCLUSIONS: Although considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems.
View details
Preview abstract
Slow concept drift is a ubiquitous, yet under-studied problem in practical machine learning systems. Although recent data is more indicative of future data in these settings, naively prioritizing these instances runs the risk of losing valuable information from the past. We propose an optimization-driven approach towards balancing instance importance over large training windows. First, we model instance relevance using a mixture of multiple timescales of decay, allowing us to capture rich temporal trends. Second, we learn an auxiliary \textit{scorer model} that recovers the appropriate mixture of timescales as a function of the instance itself. Finally, we propose a nested optimization objective for learning the scorer, by which it maximizes forward transfer for the learned model. Experiments on a large real-world dataset of 39M photos over a 9 year period show upto 15\% relative gains in accuracy compared to other robust learning baselines. We replicate our gains on two collections of real-world datasets for non-stationary learning, and extend our work to continual learning settings where, too, we beat SOTA methods by large margins.
View details
Multimodal Modeling for Spoken Language Identification
Yu Zhang
Wei Han
Shikhar Bharadwaj
Sriram (Sri) Ganapathy
Sid Dalmia
Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)
Preview abstract
Spoken language identification refers to the task of automatically predicting the spoken language in a given utterance. Conventionally, it is modeled as a speech-based language identification task. Prior techniques have been constrained to a single modality; however in the case of video data there is a wealth of other metadata that may be beneficial for this task. In this work, we propose MuSeLI, a Multimodal Spoken Language Identification method, which delves into the use of various metadata sources to enhance language identification. Our study reveals that metadata such as video title, description and geographic location provide substantial information to identify the spoken language of the multimedia recording. We conduct experiments using two diverse public datasets of YouTube videos, and obtain state-of-the-art results on the language identification task. We additionally conduct an ablation study that describes the distinct contribution of each modality for language recognition.
View details
FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting
Meenatchi Sundaram Muthu Selva Annamalai
Emiliano De Cristofaro
Network and Distributed System Security (NDSS) Symposium (2024)
Preview abstract
Browser fingerprinting often provides an attractive alternative to third-party cookies for tracking users across the web. In fact, the increasing restrictions on third-party cookies placed by common web browsers and recent regulations like the GDPR may accelerate the transition. To counter browser fingerprinting, previous work proposed several techniques to detect its prevalence and severity. However, these rely on 1) centralized web crawls and/or 2) computationally intensive operations to extract and process signals (e.g., information-flow and static analysis).
To address these limitations, we present FP-Fed, the first distributed system for browser fingerprinting detection. Using FP-Fed, users can collaboratively train on-device models based on their real browsing patterns, without sharing their training data with a central entity, by relying on Differentially Private Federated Learning (DP-FL). To demonstrate its feasibility and effectiveness, we evaluate FP-Fed’s performance on a set of 18.3k popular websites with different privacy levels, numbers of participants, and features extracted from the scripts. Our experiments show that FP-Fed achieves reasonably high detection performance and can perform both training and inference efficiently, on-device, by only relying on runtime signals extracted from the execution trace, without requiring any resource-intensive operation.
View details
Preview abstract
Historically, much of machine learning research has focused on the performance of the algorithm alone, but recently more attention has been focused on optimizing joint human-algorithm performance. Here, we analyze a specific type of human-algorithm collaboration where the algorithm has access to a set of $n$ items, and presents a subset of size $k$ to the human, who selects a final item from among those $k$. This scenario could model content recommendation, route planning, or any type of labeling task. Because both the human and algorithm have imperfect, noisy information about the true ordering of items, the key question is: which value of $k$ maximizes the probability that the best item will be ultimately selected? For $k=1$, performance is optimized by the algorithm acting alone, and for $k=n$ it is optimized by the human acting alone.
Surprisingly, we show that for multiple of noise models, it is optimal to set $k \in [2, n-1]$ - that is, there are strict benefits to collaborating, even when the human and algorithm have equal accuracy separately. We demonstrate this theoretically for the Mallows model and experimentally for the Random Utilities models of noisy permutations. However, we show this pattern is \emph{reversed} when the human is anchored on the algorithm's presented ordering - the joint system always has strictly worse performance. We extend these results to the case where the human and algorithm differ in their accuracy levels, showing that there always exist regimes where a more accurate agent would strictly benefit from collaborating with a less accurate one, but these regimes are asymmetric between the human and the algorithm's accuracy.
View details