Economics and Electronic Commerce

Google is a global leader in electronic commerce. Not surprisingly, considerable attention is devoted to research in this area. Topics include 1) auction design, 2) advertising effectiveness, 3) statistical methods, 4) forecasting and prediction, 5) survey research, 6) policy analysis and a host of other topics. This research involves interdisciplinary collaboration among computer scientists, economists, statisticians, and analytic marketing researchers both at Google and academic institutions around the world.

A major challenge is solving these problems at very large scales. For example, the advertising market has billions of transactions daily, spread across millions of advertisers, presenting a unique opportunity to test and refine economic principles as applied to a very large number of interacting, self-interested parties with a myriad of objectives. At Google, research is an opportunity to translate direction into practice, influencing how production systems are designed and used.

Recent Publications

Data Exchange Markets via Utility Balancing
Aditya Bhaskara
Sungjin Im
Kamesh Munagala
Govind S. Sankar
Preview abstract This paper explores the design of a balanced data-sharing marketplace for entities with heterogeneous datasets and machine learning models that they seek to refine using data from other agents. The goal of the marketplace is to encourage participation for data sharing in the presence of such heterogeneity. Our market design approach for data sharing focuses on interim utility balance, where participants contribute and receive equitable utility from refinement of their models. We present such a market model for which we study computational complexity, solution existence, and approximation algorithms for welfare maximization and core stability. We finally support our theoretical insights with simulations on a mean estimation task inspired by road traffic delay estimation. View details
Preview abstract We propose a new Markov Decision Process (MDP) model for ad auctions to capture the user response to the quality of ads, with the objective of maximizing the long-term discounted revenue. By incorporating user response, our model takes into consideration all three parties involved in the auction (advertiser, auctioneer, and user). The state of the user is modeled as a user-specific click-through rate (CTR) with the CTR changing in the next round according to the set of ads shown to the user in the current round. We characterize the optimal mechanism for this MDP as a Myerson’s auction with a notion of modified virtual value, which relies on the value distribution of the advertiser, the current user state, and the future impact of showing the ad to the user. Leveraging this characterization, we design a sample-efficient and computationally-efficient algorithm which outputs an approximately optimal policy that requires only sample access to the true MDP and the value distributions of the bidders. Finally, we propose a simple mechanism built upon second price auctions with personalized reserve prices and show it can achieve a constant-factor approximation to the optimal long term discounted revenue. View details
Preview abstract Effective model calibration is a critical and indispensable component in developing Media Mix Models (MMMs). One advantage of Bayesian-based MMMs lies in their capacity to accommodate the information from experiment results and the modelers' domain knowledge about the ad effectiveness by setting priors for the model parameters. However, it remains ambiguous about how and which Bayesian priors should be tuned for calibration purpose. In this paper, we propose a new calibration method through model reparameterization. The reparameterized model includes Return on Ads Spend (ROAS) as a model parameter, enabling straightforward adjustment of its prior distribution to align with either experiment results or the modeler's prior knowledge. The proposed method also helps address several key challenges regarding combining MMMs and incrementality experiments. We use simulations to demonstrate that our approach can significantly reduce the bias and uncertainty in the resultant posterior ROAS estimates. View details
Modeling Recommender Ecosystems: Research Challenges at the Intersection of Mechanism Design, Reinforcement Learning and Generative Models
Martin Mladenov
Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI-24), Vancouver(2024) (to appear)
Preview abstract Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research---and most practical recommenders of any import---is on the \emph{local, myopic} optimization of the recommendations made to individual users. This comes at a significant cost to the \emph{long-term utility} that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system---and the interactions among them induced by the recommender's policy---is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem ``health.'' Doing so requires: optimization over long horizons using techniques such as \emph{reinforcement learning}; making inevitable tradeoffs among the utility that can be generated for different actors using the methods of \emph{social choice}; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of \emph{mechanism design}; better modeling of both user and item-provider behaviors by incorporating notions from \emph{behavioral economics and psychology}; and exploiting recent advances in \emph{generative and foundation models} to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines. View details
Learning Thresholds with Latent Value and Censored Feedback
Jiahao Zhang
Tao Lin
Weiqiang Zheng
Xiaotie Deng
Preview abstract In this paper, we investigate a problem of \emph{actively} learning threshold in latent space, where the \emph{unknown} reward $g(\gamma, v)$ depends on the proposed threshold $\gamma$ and latent value $v$ and it can be \emph{only} achieved if the threshold is lower than or equal to the \emph{unknown} latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most $\eps$ smaller than the optimum and prove that the number of queries needed can be infinitely large even when $g(\gamma, v)$ is monotone with respect to both $\gamma$ and $v$. On the positive side, we provide a tight query complexity $\Tilde{\Theta}(1/\eps^3)$ when $g$ is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight $\Tilde{\Theta}(1/\eps^3)$ query complexity can be achieved as long as $g$ satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight $\Theta(T^{2/3})$ regret bound using continuous-arm bandit techniques and the aforementioned query complexity results. View details
Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice
Negin Golrezaei
Patrick Jaillet
Jason Cheuk Nam Liang
Proceedings of the ACM on Web Conference 2024, 267–275
Preview abstract Online advertising channels commonly focus on maximizing total advertiser welfare to enhance channel health, and previous literature has studied augmenting ad auctions with machine learning predictions on advertiser values (also known asmachine-learned advice ) to improve total welfare. Yet, such improvements could come at the cost of individual bidders' welfare and do not shed light on how particular advertiser bidding strategies impact welfare. Motivated by this, we present an analysis on an individual bidder's welfare loss in the autobidding world for auctions with and without machine-learned advice, and also uncover how advertiser strategies relate to such losses. In particular, we demonstrate how ad platforms can utilize ML advice to improve welfare guarantee on the aggregate and individual bidder level by setting ML advice as personalized reserve prices when the platform consists ofautobidders who maximize value while respecting a return on ad spend (ROAS) constraint. Under parallel VCG auctions with such ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for an individual autobidder, and show that the lower-bound guarantee is positively correlated with ML advice quality as well as the scale of bids induced by the autobidder's bidding strategies. Further, we show that no truthful, and possibly randomized mechanism with anonymous allocations can achieve universally better individual welfare guarantees than VCG, in the presence of personalized reserves based on ML-advice of equal quality. Moreover, we extend our individual welfare guarantee results to generalized first price (GFP) and generalized second price (GSP) auctions. Finally, we present numerical studies using semi-synthetic data derived from ad auction logs of a search ad platform to showcase improvements in individual welfare when setting personalized reserve prices with ML-advice. View details