Data Mining and Modeling

The proliferation of machine learning means that learned classifiers lie at the core of many products across Google. However, questions in practice are rarely so clean as to just to use an out-of-the-box algorithm. A big challenge is in developing metrics, designing experimental methodologies, and modeling the space to create parsimonious representations that capture the fundamentals of the problem. These problems cut across Google’s products and services, from designing experiments for testing new auction algorithms to developing automated metrics to measure the quality of a road map.

Data mining lies at the heart of many of these questions, and the research done at Google is at the forefront of the field. Whether it is finding more efficient algorithms for working with massive data sets, developing privacy-preserving methods for classification, or designing new machine learning approaches, our group continues to push the boundary of what is possible.

Recent Publications

First Passage Percolation with Queried Hints
Kritkorn Karntikoon
Aaron Schild
Yiheng Shen
Ali Sinop
Preview abstract Optimization problems are ubiquitous throughout the modern world. In many of these applications, the input is inherently noisy and it is expensive to probe all of the noise in the input before solving the relevant optimization problem. In this work, we study how much of that noise needs to be queried in order to obtain an approximately optimal solution to the relevant problem. We focus on the shortest path problem in graphs, where one may think of the noise as coming from real-time traffic. We consider the following model: start with a weighted base graph $G$ and multiply each edge weight by an independently chosen, uniformly random number in $[1,2]$ to obtain a random graph $G'$. This model is called \emph{first passage percolation}. Mathematicians have studied this model extensively when $G$ is a $d$-dimensional grid graph, but the behavior of shortest paths in this model is still poorly understood in general graphs. We make progress in this direction for a class of graphs that resembles real-world road networks. Specifically, we prove that if the geometric realization of $G$ has constant doubling dimension, then for a given $s-t$ pair, we only need to probe the weights on $((\log n) / \epsilon)^{O(1)}$ edges in $G'$ in order to obtain a $(1 + \epsilon)$-approximation to the $s-t$ distance in $G'$. We also demonstrate experimentally that this result is pessimistic -- one can even obtain a short path in $G'$ with a small number of probes to $G'$. View details
Shorts vs. Regular Videos on YouTube: A Comparative Analysis of User Engagement and Content Creation Trends
Caroline Violot
Tugrulcan Elmais
Mathias Humbert
ACM Web Science Conference 2024 (WEBSCI24)(2024)
Preview abstract YouTube introduced the Shorts video format in 2021, allowing users to upload short videos that are prominently displayed on its website and app. Despite having such a large visual footprint, there are no studies to date that have looked at the impact Shorts introduction had on the production and consumption of content on YouTube. This paper presents the first comparative analysis of YouTube Shorts versus regular videos with respect to user engagement (i.e., views, likes, and comments), content creation frequency and video categories. We collected a dataset containing information about 70k channels that posted at least one Short, and we analyzed the metadata of all the videos (9.9M Shorts and 6.9M regular videos) they uploaded between January 2021 and December 2022, spanning a two-year period including the introduction of Shorts. Our longitudinal analysis shows that content creators consistently increased the frequency of Shorts production over this period, especially for newly-created channels, which surpassed that of regular videos. We also observe that Shorts target mostly entertainment categories, while regular videos cover a wide variety of categories. In general, Shorts attract more views and likes per view than regular videos, but attract less comments per view. However, Shorts do not outperform regular videos in the education and political categories as much as they do in other categories. Our study contributes to understanding social media dynamics, to quantifying the spread of short-form content, and to motivating future research on its impact on society. View details
LinguaMeta: Unified Metadata for Thousands of Languages
Uche Okonkwo
Emily Drummond
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Preview abstract We introduce LinguaMeta, a unified resource for language metadata for thousands of languages, including language codes, names, number of speakers, writing systems, countries, official status, coordinates, and language varieties. The resources are drawn from various existing repositories and supplemented with our own research. Each data point is tagged for its origin, allowing us to easily trace back to and improve existing resources with more up-to-date and complete metadata. The resource is intended for use by researchers and organizations who aim to extend technology to thousands of languages. View details
Preview abstract Computing efficient traffic signal plans is often based on the amount of traffic in an intersection, its distribution over the various intersection movements and hours as well as on performance metrics such as traffic delay. In their simple and typical form plans are fixed in the same hour over weekdays. This allows low operation costs without the necessity for traffic detection and monitoring tools. A critical factor on the potential efficiency of such plans is the similarity of traffic patterns over the days along each of the intersection movements. We refer to such similarity as the traffic stability of the intersection and define simple metrics to measure it based on traffic volume and traffic delay. In this paper, we propose an automatic probe data based method, for city-wide estimation of traffic stability. We discuss how such measures can be used for signal planning such as in selecting plan resolution or as an indication as which intersections can benefit from dynamic but expensive traffic detection tools. We also identify events of major changes in traffic characteristics of an intersection. We demonstrate the framework by using real traffic statistics to study the traffic stability in the city of Haifa along its 162 intersections. We study the impact of the time of day on the stability, detect major changes in traffic and find intersections with high and low stability. View details
Preview abstract Many geographic information systems applications rely on the data provided by user devices in the road network. Such applications include traffic monitoring, driving navigation, detecting road closures or the construction of new roads, etc. This signal is collected by sampling locations from the user trajectories and is a critical process for all such systems. Yet, it has not been sufficiently studied in the literature. The most natural way to sample a trajectory is perhaps using a frequency based algorithm, e.g., sample every $x$ seconds. However, as we argue in this paper, such a simple strategy can be very wasteful in terms of resources (e.g., server-side processing, user battery) and in terms of the amount of user data that it maintains. In this work we conduct a horizontal study of various location sampling algorithms (including frequency-based, road geography-based, reservoir-sampling based, etc.) and extract their trade-offs in terms of various metrics of interest, such as, the size of the stored data and the induced quality of training for prediction tasks (e.g., predicting speeds) using the road network of New York City. View details
Preview abstract Almost no modern software system is written from scratch, and developers are required to effectively learn to use third-party libraries and software services. Thus, many practitioners and researchers have looked for ways to create effective documentation that supports developers’ learning. However, few efforts have focused on how people actually use the documentation. In this paper, we report on an exploratory, multi-phase, mixed methods empirical study of documentation page-view logs from four cloud-based industrial services. By analyzing page-view logs for over 100,000 users, we find diverse patterns of documentation page visits. Moreover, we show statistically that which documentation pages people visit often correlates with user characteristics such as past experience with the specific product, on the one hand, and with future adoption of the API on the other hand. We discuss the implications of these results on documentation design and propose documentation page-view log analysis as a feasible technique for design audits of documentation, from ones written for software developers to ones designed to support end users (e.g., Adobe Photoshop). View details