Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 360 publications
Online Bidding under RoS Constraints without Knowing the Value
Sushant Vijayan
Swati Padmanabhan
The Web Conference (2025)
Preview abstract
We consider the problem of auto-bidding in online advertising from the perspective of a single advertiser. The goal of the advertiser is to maximize their value under the Return-on-Spend (RoS) constraint, with performance measured in terms of \emph{regret} against the optimal offline solution that knows all queries a priori. Importantly, the value of the item is \textit{unknown} to the bidder ahead of time. The goal of the bidder is to quickly identify the optimal bid, while simultaneously satisfying budget and RoS constraints. Using a simple UCB-style algorithm, we provide the first result which achieves optimal regret and constraint violation for this problem.
View details
Preview abstract
We consider the Coalition Structure Learning (CSL) problem in multi-agent systems, motivated by the existence of coalitions in many real-world systems, e.g., trading platforms and auction systems. In this problem, there is a hidden coalition structure within a set of $n$ agents, which affects the behavior of the agents in games. Our goal is to actively design a sequence of games
for the agents to play, such that observations in these games can be used to learn the hidden coalition structure. In particular, we consider the setting where in each round, we design and present a game together with a strategy profile to the agents, and receive a multiple-bit observation -- for each agent, we observe whether or not they would like to deviate from the specified strategy in this given game. Our contributions are three-fold: First, we show that we can learn the coalition structure in $O(\log n)$ rounds if we are allowed to choose any normal-form game in each round, matching the information-theoretical lower bound, and the result can be extended to congestion games. Second, in a more restricted setting where we can only choose a graphical game with degree limit $d$, we develop an algorithm to learn the coalition structure in $O(n/d+\log d)$ rounds. Third, when we can only learn the coalition structure through running second-price auctions with personalized reserve prices, we show that the coalition structure can be learned in $O(c\log n)$ rounds, where $c$ is the size of the largest coalition.
View details
Media Mix Model Calibration With Bayesian Priors
Mike Wurm
Brenda Price
Ying Liu
research.google (2024)
Preview abstract
Effective model calibration is a critical and indispensable component in developing Media Mix Models (MMMs). One advantage of Bayesian-based MMMs lies in their capacity to accommodate the information from experiment results and the modelers' domain knowledge about the ad effectiveness by setting priors for the model parameters. However, it remains ambiguous about how and which Bayesian priors should be tuned for calibration purpose. In this paper, we propose a new calibration method through model reparameterization. The reparameterized model includes Return on Ads Spend (ROAS) as a model parameter, enabling straightforward adjustment of its prior distribution to align with either experiment results or the modeler's prior knowledge. The proposed method also helps address several key challenges regarding combining MMMs and incrementality experiments. We use simulations to demonstrate that our approach can significantly reduce the bias and uncertainty in the resultant posterior ROAS estimates.
View details
Modeling Recommender Ecosystems: Research Challenges at the Intersection of Mechanism Design, Reinforcement Learning and Generative Models
Martin Mladenov
Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI-24), Vancouver (2024) (to appear)
Preview abstract
Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research---and most practical recommenders of any import---is on the \emph{local, myopic} optimization of the recommendations made to individual users. This comes at a significant cost to the \emph{long-term utility} that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system---and the interactions among them induced by the recommender's policy---is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem ``health.'' Doing so requires: optimization over long horizons using techniques such as \emph{reinforcement learning}; making inevitable tradeoffs among the utility that can be generated for different actors using the methods of \emph{social choice}; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of \emph{mechanism design}; better modeling of both user and item-provider behaviors by incorporating notions from \emph{behavioral economics and psychology}; and exploiting recent advances in \emph{generative and foundation models} to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.
View details
Data Exchange Markets via Utility Balancing
Kamesh Munagala
Sungjin Im
Aditya Bhaskara
Govind S. Sankar
WebConf (2024)
Preview abstract
This paper explores the design of a balanced data-sharing marketplace for entities with heterogeneous datasets and machine learning models that they seek to refine using data from other agents. The goal of the marketplace is to encourage participation for data sharing in the presence of such heterogeneity. Our market design approach for data sharing focuses on interim utility balance, where participants contribute and receive equitable utility from refinement of their models. We present such a market model for which we study computational complexity, solution existence, and approximation algorithms for welfare maximization and core stability. We finally support our theoretical insights with simulations on a mean estimation task inspired by road traffic delay estimation.
View details
Preview abstract
In this paper, we investigate a problem of \emph{actively} learning threshold in latent space, where the \emph{unknown} reward $g(\gamma, v)$ depends on the proposed threshold $\gamma$ and latent value $v$ and it can be \emph{only} achieved if the threshold is lower than or equal to the \emph{unknown} latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most $\eps$ smaller than the optimum and prove that the number of queries needed can be infinitely large even when $g(\gamma, v)$ is monotone with respect to both $\gamma$ and $v$. On the positive side, we provide a tight query complexity $\Tilde{\Theta}(1/\eps^3)$ when $g$ is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight $\Tilde{\Theta}(1/\eps^3)$ query complexity can be achieved as long as $g$ satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight $\Theta(T^{2/3})$ regret bound using continuous-arm bandit techniques and the aforementioned query complexity results.
View details
Preview abstract
We propose a new Markov Decision Process (MDP) model for ad auctions to capture the
user response to the quality of ads, with the objective of maximizing the long-term discounted
revenue. By incorporating user response, our model takes into consideration all three parties
involved in the auction (advertiser, auctioneer, and user). The state of the user is modeled as a
user-specific click-through rate (CTR) with the CTR changing in the next round according to the
set of ads shown to the user in the current round. We characterize the optimal mechanism for this MDP as a Myerson’s auction with a notion of modified virtual value, which relies on the value distribution of the advertiser, the current user state, and the future impact of showing the ad to the user. Leveraging this characterization, we design a sample-efficient and computationally-efficient algorithm which outputs an approximately optimal policy that requires only sample access to the true MDP and the value distributions of the bidders. Finally, we propose a simple mechanism built upon second price auctions with personalized reserve prices and show it can achieve a constant-factor approximation to the optimal long term discounted revenue.
View details
Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice
Negin Golrezaei
Jason Cheuk Nam Liang
Patrick Jaillet
Proceedings of the ACM on Web Conference 2024, 267–275
Preview abstract
Online advertising channels commonly focus on maximizing total advertiser welfare to enhance channel health, and previous literature has studied augmenting ad auctions with machine learning predictions on advertiser values (also known asmachine-learned advice ) to improve total welfare. Yet, such improvements could come at the cost of individual bidders' welfare and do not shed light on how particular advertiser bidding strategies impact welfare. Motivated by this, we present an analysis on an individual bidder's welfare loss in the autobidding world for auctions with and without machine-learned advice, and also uncover how advertiser strategies relate to such losses. In particular, we demonstrate how ad platforms can utilize ML advice to improve welfare guarantee on the aggregate and individual bidder level by setting ML advice as personalized reserve prices when the platform consists ofautobidders who maximize value while respecting a return on ad spend (ROAS) constraint. Under parallel VCG auctions with such ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for an individual autobidder, and show that the lower-bound guarantee is positively correlated with ML advice quality as well as the scale of bids induced by the autobidder's bidding strategies. Further, we show that no truthful, and possibly randomized mechanism with anonymous allocations can achieve universally better individual welfare guarantees than VCG, in the presence of personalized reserves based on ML-advice of equal quality. Moreover, we extend our individual welfare guarantee results to generalized first price (GFP) and generalized second price (GSP) auctions. Finally, we present numerical studies using semi-synthetic data derived from ad auction logs of a search ad platform to showcase improvements in individual welfare when setting personalized reserve prices with ML-advice.
View details
Efficiency of the Generalized Second-Price Auction for Value Maximizers
Hanrui Zhang
Proceedings of the ACM on Web Conference 2024, 46–56
Preview abstract
We study the price of anarchy of the generalized second-price auction where bidders are value maximizers (i.e., autobidders). We show that in general the price of anarchy can be as bad as 0. For comparison, the price of anarchy of running VCG is 1/2 in the autobidding world. We further show a fined-grained price of anarchy with respect to the discount factors (i.e., the ratios of click probabilities between lower slots and the highest slot in each auction) in the generalized second-price auction, which highlights the qualitative relation between the smoothness of the discount factors and the efficiency of the generalized second-price auction.
View details
Non-uniform Bid-scaling and Equilibria for Different Auctions: An Empirical Study
Proceedings of the ACM on Web Conference 2024, 256–266
Preview abstract
In recent years, the growing adoption of autobidding has motivated the study of auction design with value-maximizing auto-bidders. It is known that under mild assumptions, uniform bid-scaling is an optimal bidding strategy in truthful auctions, e.g., Vickrey-Clarke-Groves auction (VCG), and the price of anarchy for VCG is 2. However, for other auction formats like First-Price Auction (FPA) and Generalized Second-Price auction (GSP), uniform bid-scaling may not be an optimal bidding strategy, and bidders have incentives to deviate to adopt strategies with non-uniform bid-scaling. Moreover, FPA can achieve optimal welfare if restricted to uniform bid-scaling, while its price of anarchy becomes 2 when non-uniform bid-scaling strategies are allowed.
All these price of anarchy results have been focused on welfare approximation in the worst-case scenarios. To complement theoretical understandings, we empirically study how different auction formats (FPA, GSP, VCG) with different levels of non-uniform bid-scaling perform in an autobidding world with a synthetic dataset for auctions. Our empirical findings include: * For both uniform bid-scaling and non-uniform bid-scaling, FPA is better than GSP and GSP is better than VCG in terms of both welfare and profit; * A higher level of non-uniform bid-scaling leads to lower welfare performance in both FPA and GSP, while different levels of non-uniform bid-scaling have no effect in VCG. Our methodology of synthetic data generation may be of independent interest.
View details
Preview abstract
Background: Physical activity levels worldwide have declined over recent decades, with the average number of daily steps decreasing steadily since 1995. Given that physical inactivity is a major modifiable risk factor for chronic disease and mortality, increasing the level of physical activity is a clear opportunity to improve population health on a broad scale. The current study aims to assess the cost-effectiveness and budget impact of a Fitbit-based intervention among healthy, but insufficiently active, adults to quantify the potential clinical and economic value for a commercially insured population in the U.S. Methods: An economic model was developed to compare physical activity, health outcomes, costs, and quality-adjusted life-years (QALYs) associated with usual care and a Fitbit-based intervention that consists of a consumer wearable device alongside goal setting and feedback features provided in a companion software application. Improvement in physical activity was measured in terms of mean daily step count. The effects of increased daily step count were characterized as reduced short-term healthcare costs and decreased incidence of chronic diseases with corresponding improvement in health utility and reduced disease costs. Published literature, standardized costing resources, and data from a National Institutes of Health-funded research program were utilized. Cost-effectiveness and budget impact analyses were performed for a hypothetical cohort of middle-aged adults. Results: The base case cost-effectiveness results found the Fitbit intervention to be dominant (less costly and more effective) compared to usual care. Discounted 15-year incremental costs and QALYs were -$1,257 and 0.011, respectively. In probabilistic analyses, the Fitbit intervention was dominant in 93% of simulations and either dominant or cost-effective (defined as less than $150,000/QALY gained) in 99.4% of simulations. For budget impact analyses conducted from the perspective of a U.S. Commercial payer, the Fitbit intervention was estimated to save approximately $6.5-million dollars over 2 years and $8.5-million dollars over 5 years for a cohort of 8,000 participants. Although the economic analysis results were very robust, the short-term healthcare cost savings were the most uncertain in this population and warrant further research. Conclusions: There is abundant evidence documenting the benefits of wearable activity trackers when used to increase physical activity as measured by daily step counts. Our research provides additional health economic evidence supporting implementation of wearable-based interventions to improve population health and offers compelling support for payers to consider including wearable-based physical activity interventions as part of a comprehensive portfolio of preventive health offerings for their insured populations.
View details
Mechanism Design for Large Language Models
Haifeng Xu
Paul Duetting
Proceedings of the ACM on Web Conference 2024, Association for Computing Machinery, New York, NY, USA, 144–155
Preview abstract
We investigate auction mechanisms for AI-generated content, focusing on applications like ad creative generation. In our model, agents' preferences over stochastically generated content are encoded as large language models (LLMs). We propose an auction format that operates on a token-by-token basis, and allows LLM agents to influence content creation through single dimensional bids. We formulate two desirable incentive properties and prove their equivalence to a monotonicity condition on output aggregation. This equivalence enables a second-price rule design, even absent explicit agent valuation functions. Our design is supported by demonstrations on a publicly available LLM.
View details
Preview abstract
Millions of people turn to Google Search each day for information on things as diverse as new cars or flu symptoms. The terms that they enter contain valuable information on their daily intent and activities, but the information in these search terms has been difficult to fully leverage. User-defined categorical filters have been the most common way to shrink the dimensionality of search data to a tractable size for analysis and modeling. In this paper we present a new approach to reducing the dimensionality of search data while retaining much of the information in the individual terms without user-defined rules. Our contributions are two-fold: 1) we introduce SLaM Compression, a way to quantify search terms using pre-trained language models and create a representation of search data that has low dimensionality, is memory efficient, and effectively acts as a summary of search, and 2) we present CoSMo, a Constrained Search Model for estimating real world events using only search data. We demonstrate the efficacy of our contributions by estimating with high accuracy U.S. automobile sales and U.S. flu rates using only Google Search data.
View details
Preview abstract
Connected TV (CTV) devices blend characteristics of digital desktop and mobile devices--such as the option to log in and the ability to access a broad range of online content--and linear TV--such as a living room experience that can be shared by multiple members of a household. This blended viewing experience requires the development of measurement methods that are adapted to this novel environment. For other devices, ad measurement and planning have an established history of being guided by the ground truth of panels composed of people who share their device behavior. A CTV panel-only measurement solution for reach is not practical due to the panel size that would be needed to accurately measure smaller digital campaigns. Instead, we generalize the existing approach used to measure reach for other devices that combines panel data with other data sources (e.g., ad server logs, publisher-provided self-reported demographic data, survey data) to account for co-viewing. This paper describes data from a CTV panel and shows how this data can be used to effectively measure the aggregate co-viewing rate and fit demographic models that account for co-viewing behavior. Special considerations include data filtering, weighting at the panelist and household levels to ensure representativeness, and measurement uncertainty.
View details
Preview abstract
We study an auction setting in which bidders bid for placement of their content within a summary generated by a large language model (LLM), e.g., an ad auction in which the display is a summary paragraph of multiple ads. This generalizes the classic ad settings such as position auctions to an LLM generated setting, which allows us to handle general display formats. We propose a novel factorized framework in which an auction module and an LLM module work together via a prediction model to provide welfare maximizing summary outputs in an incentive compatible manner. We provide a theoretical analysis of this framework and synthetic experiments to demonstrate the feasibility and validity of the system together with welfare comparisons.
View details