Jump to Content
Farhad Hormozdiari

Farhad Hormozdiari

Farhad is a research scientist in the genomics team at Google Health, where he combines genetic data and machine learning techniques to improve disease predictions for a diverse set of populations. His long-term research aims are to better healthcare outcomes and to lower costs. Prior to Google, Farhad was a postdoctoral fellow at Broad Institute and Harvard T.H. Chan School of Public Health working on understanding the biological mechanisms of diseases. Farhad obtained his PhD in computer science at UCLA while working on statistical methods to detect causal variants for a wide range of diseases. Farhad has published over 70+ peer-reviewed journals including Nature, Nature Genetics and Science. Farhad has won many awards including the Best Paper in ISMB/ECCB 2015.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models
    Babak Behsaz
    Babak Alipanahi
    Zachary Ryan Mccaw
    Davin Hill
    Tae-Hwi Schwantes-An
    Dongbing Lai
    Andrew Carroll
    Brian Hobbs
    Michael Cho
    Nature Genetics (2023)
    Preview abstract Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is highly heritable. While COPD is clinically defined by applying thresholds to summary measures of lung function, a quantitative liability score has more power to identify genetic signals. Here we train a deep convolutional neural network on noisy self-reported and International Classification of Diseases labels to predict COPD case-control status from high-dimensional raw spirograms and use the model's predictions as a liability score. The machine-learning-based (ML-based) liability score accurately discriminates COPD cases and controls, and predicts COPD-related hospitalization without any domain-specific knowledge. Moreover, the ML-based liability score is associated with overall survival and exacerbation events. A genome-wide association study on the ML-based liability score replicates existing COPD and lung function loci and also identifies 67 new loci. Lastly, our method provides a general framework to use ML methods and medical-record-based labels that does not require domain knowledge or expert curation to improve disease prediction and genomic discovery for drug design. View details
    Unsupervised representation learning improves genomic discovery for lung function and respiratory disease prediction
    Babak Behsaz
    Zachary Ryan Mccaw
    Davin Hill
    Robert Luben
    Dongbing Lai
    John Bates
    Howard Yang
    Tae-Hwi Schwantes-An
    Yuchen Zhou
    Anthony Khawaja
    Andrew Carroll
    Brian Hobbs
    Michael Cho
    medRxiv (2023)
    Preview abstract High-dimensional clinical data are becoming more accessible in biobank-scale datasets. However, effectively utilizing high-dimensional clinical data for genetic discovery remains challenging. Here we introduce a general deep learning-based framework, REpresentation learning for Genetic discovery on Low-dimensional Embeddings (REGLE), for discovering associations between genetic variants and high-dimensional clinical data. REGLE uses convolutional variational autoencoders to compute a non-linear, low-dimensional, disentangled embedding of the data with highly heritable individual components. REGLE can incorporate expert-defined or clinical features and provides a framework to create accurate disease-specific polygenic risk scores (PRS) in datasets which have minimal expert phenotyping. We apply REGLE to both respiratory and circulatory systems: spirograms which measure lung function and photoplethysmograms (PPG) which measure blood volume changes. Genome-wide association studies on REGLE embeddings identify more genome-wide significant loci than existing methods and replicate known loci for both spirograms and PPG, demonstrating the generality of the framework. Furthermore, these embeddings are associated with overall survival. Finally, we construct a set of PRSs that improve predictive performance of asthma, chronic obstructive pulmonary disease, hypertension, and systolic blood pressure in multiple biobanks. Thus, REGLE embeddings can quantify clinically relevant features that are not currently captured in a standardized or automated way. View details
    Multimodal LLMs for health grounded in individual-specific data
    Anastasiya Belyaeva
    Shravya Shetty
    Andrew Carroll
    Nick Furlotte
    ICML Workshop on Machine Learning for Multimodal Healthcare Data (2023)
    Preview abstract Large language models (LLMs) have shown an impressive ability to solve tasks in a wide range of fields including health. Within the health domain, there are many data modalities that are relevant to an individual’s health status. To effectively solve tasks related to individual health, LLMs will need the ability to use a diverse set of features as context. However, the best way to encode and inject complex high-dimensional features into the input stream of an LLM remains an active area of research. Here, we explore the ability of a foundation LLM to estimate disease risk given health-related input features. First, we evaluate serialization of structured individual-level health data into text along with in context learning and prompt tuning approaches. We find that the LLM performs better than random in the zero-shot and few-shot cases, and has comparable and often equivalent performance to baseline after prompt tuning. Next, we propose a way to encode complex non-text data modalities into the token embedding space and then use this encoding to construct multimodal sentences. We show that this multimodal LLM achieves better or equivalent performance compared to baseline models. Overall, our results show the potential for using multi-modal LLMs grounded in individual health data to solve complex tasks such as risk prediction. View details
    Preview abstract Genome-wide association studies (GWAS) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n=370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average). View details
    Preview abstract Genome-wide association studies (GWASs) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n = 370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average). View details
    Preview abstract Genome-wide association studies (GWAS) are used to identify genetic variants significantly correlated with a target disease or phenotype as a first step to detect potentially causal genes. The availability of high-dimensional biomedical data in population-scale biobanks has enabled novel machine-learning-based phenotyping approaches in which machine learning (ML) algorithms rapidly and accurately phenotype large cohorts with both genomic and clinical data, increasing the statistical power to detect variants associated with a given phenotype. While recent work has demonstrated that these methods can be extended to diseases for which only low quality medical-record-based labels are available, it is not possible to quantify changes in statistical power since the underlying ground-truth liability scores for the complex, polygenic diseases represented by these medical-record-based phenotypes is unknown. In this work, we aim to empirically study the robustness of ML-based phenotyping procedures to label noise by applying varying levels of random noise to vertical cup-to-disc ratio (VCDR), a quantitative feature of the optic nerve that is predictable from color fundus imagery and strongly influences glaucoma referral risk. We show that the ML-based phenotyping procedure recovers the underlying liability score across noise levels, significantly improving genetic discovery and PRS predictive power relative to noisy equivalents. Furthermore, initial denoising experiments show promising preliminary results, suggesting that improving such methods will yield additional gains. View details
    Large-scale machine learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology
    Babak Alipanahi
    Babak Behsaz
    Zachary Ryan Mccaw
    Emanuel Schorsch
    Lizzie Dorfman
    Sonia Phene
    Andrew Walker Carroll
    Anthony Khawaja
    American Journal of Human Genetics (2021)
    Preview abstract Genome-wide association studies (GWAS) require accurate cohort phenotyping, but expert labeling can be costly, time-intensive, and variable. Here we develop a machine learning (ML) model to predict glaucomatous features from color fundus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant (GWS; P≤5×10-8) hits in 156 loci. The ML-based GWAS replicated 62 of 65 GWS loci from a recent VCDR GWAS in the UKB for which two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance of the novel hits to VCDR, with select loci near genes involved in neuronal and synaptic biology or known to cause severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR in independent datasets. View details
    Preview abstract ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain. Underspecification is common in modern ML pipelines, such as those based on deep learning. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We show that this problem appears in a wide variety of practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain. View details
    No Results Found