Mario Lucic
Mario Lucic is a Senior Staff Research Scientist at Google DeepMind working on the Gemini team where he is co-leading the efforts on video and audio-video understanding. Since joining Google he worked on GenAI and large-scale vision and multimodal systems. He received his PhD from ETH Zurich where he investigated efficient and theoretically grounded data selection algorithms. He is serving as the Area Chair for NeurIPS and ICLR conferences.
Research Areas
Authored Publications
Sort By
PaLI-X: On Scaling up a Multilingual Vision and Language Model
Josip Djolonga
Piotr Padlewski
Basil Mustafa
Carlos Riquelme
Sebastian Goodman
Yi Tay
Siamak Shakeri
Daniel Salz
Michael Tschannen
Hexiang (Frank) Hu
Mandar Joshi
Filip Pavetić
Gang Li
Anurag Arnab
Yuanzhong Xu
Keran Rong
Neil Houlsby
Computer Vision and Pattern Recognition Conference (CVPR) (2024)
Preview abstract
We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.
View details
Scaling Vision Transformers to 22 Billion Parameters
Josip Djolonga
Basil Mustafa
Piotr Padlewski
Justin Gilmer
Mathilde Caron
Rodolphe Jenatton
Michael Tschannen
Anurag Arnab
Carlos Riquelme
Gamaleldin Elsayed
Fisher Yu
Avital Oliver
Fantine Huot
Mark Collier
Vighnesh Birodkar
Yi Tay
Filip Pavetić
Thomas Kipf
Neil Houlsby
Arxiv (2023)
Preview abstract
The scaling of Transformers has driven breakthrough capabilities for language models.
At present, the largest large language models (LLMs) contain upwards of 100B parameters.
Vision Transformers (ViT) have introduced the same architecture to image and video modeling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters. We present a recipe for highly efficient training of a 22B-parameter ViT and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features) ViT22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between bias and performance, an improved alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT22B demonstrates the potential for "LLM-like'' scaling in vision, and provides key steps towards getting there.
View details
RUST: Latent Neural Scene Representations from Unposed Imagery
Thomas Kipf
Klaus Greff
Conference on Computer Vision and Pattern Recognition (CVPR) (2023) (to appear)
Preview abstract
Inferring the structure of 3D scenes from 2D observations is a fundamental challenge in computer vision. Recently popularized approaches based on neural scene representations have achieved tremendous impact and have been applied across a variety of applications. One of the major remaining challenges in this space is training a single model which can provide latent representations which effectively generalize beyond a single scene. Scene Representation Transformer (SRT) has shown promise in this direction, but scaling it to a larger set of diverse scenes is challenging and necessitates accurately posed ground truth data. To address this problem, we propose RUST (Really Unposed Scene representation Transformer), a pose-free approach to novel view synthesis trained on RGB images alone. Our main insight is that one can train a Pose Encoder that peeks at the target image and learns a latent pose embedding which is used by the decoder for view synthesis. We perform an empirical investigation into the learned latent pose structure and show that it allows meaningful test-time camera transformations and accurate explicit pose readouts. Perhaps surprisingly, RUST achieves similar quality as methods which have access to perfect camera pose, thereby unlocking the potential for large-scale training of amortized neural scene representations.
View details
VCT: A Video Compression Transformer
Sung Jin Hwang
NeurIPS 2022, NeurIPS 2022
Preview abstract
We show how transformers can be used to vastly simplify neural video compression. Previous methods have been relying on an increasing number of architectural biases and priors, including motion prediction and warping operations, resulting in complex models. Instead, we independently map input frames to representations and use a transformer to model their dependencies, letting it predict the distribution of future representations given the past. The resulting video compression transformer outperforms previous methods on standard video compression data sets. Experiments on synthetic data show that our model learns to handle complex motion patterns such as panning, blurring and fading purely from data. Our approach is easy to implement, and we release code to facilitate future research.
View details
Which Model to Transfer? Finding the Needle in the Growing Haystack
Cedric Renggli
André Susano Pinto
Luka Rimanic
Carlos Riquelme
Ce Zhang
Conference on Computer Vision and Pattern Recognition (2022) (to appear)
Preview abstract
Transfer learning has been recently popularized as a data-efficient alternative to training models from scratch, in particular for computer vision tasks where it provides a remarkably solid baseline. The emergence of rich model repositories, such as TensorFlow Hub, enables the practitioners and researchers to unleash the potential of these models across a wide range of downstream tasks. As these repositories keep growing exponentially, efficiently selecting a good model for the task at hand becomes paramount. We provide a formalization of this problem through a familiar notion of regret and introduce the predominant strategies, namely task-agnostic (e.g. ranking models by their ImageNet performance) and task-aware search strategies (such as linear or kNN evaluation). We conduct a large-scale empirical study and show that both task-agnostic and task-aware methods can yield high regret. We then propose a simple and computationally efficient hybrid search strategy which outperforms the existing approaches. We highlight the practical benefits of the proposed solution on a set of 19 diverse vision tasks.
View details
Object Scene Representation Transformer
Filip Pavetić
Leonidas Guibas
Klaus Greff
Thomas Kipf
Advances in Neural Information Processing Systems (2022), pp. 9512-9524
Preview abstract
A compositional understanding of the world in terms of objects and their geometry in 3D space is considered a cornerstone of human cognition. Facilitating the learning of such a representation in neural networks holds promise for substantially improving labeled data efficiency. As a key step in this direction, we make progress on the problem of learning 3D-consistent decompositions of complex scenes into individual objects in an unsupervised fashion. We introduce Object Scene Representation Transformer (OSRT), a 3D-centric model in which individual object representations naturally emerge through novel view synthesis. OSRT scales to significantly more complex scenes with larger diversity of objects and backgrounds than existing methods. At the same time, it is multiple orders of magnitude faster at compositional rendering thanks to its light field parametrization and the novel Slot Mixer decoder.
View details
Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations
Henning Meyer
Urs Bergmann
Klaus Greff
Noha Radwan
Alexey Dosovitskiy
Jakob Uszkoreit
Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Preview abstract
A classical problem in computer vision is to infer a 3D scene representation from few images that can be used to render novel views at interactive rates. Previous work focuses on reconstructing pre-defined 3D representations, e.g. textured meshes, or implicit representations, e.g. radiance fields, and often requires input images with precise camera poses and long processing times for each novel scene.
In this work, we propose the Scene Representation Transformer (SRT), a method which processes posed or unposed RGB images of a new area, infers a "set-latent scene representation", and synthesises novel views, all in a single feed-forward pass. To calculate the scene representation, we propose a generalization of the Vision Transformer to sets of images, enabling global information integration, and hence 3D reasoning. An efficient decoder transformer parameterizes the light field by attending into the scene representation to render novel views. Learning is supervised end-to-end by minimizing a novel-view reconstruction error.
We show that this method outperforms recent baselines in terms of PSNR and speed on synthetic datasets, including a new dataset created for the paper. Further, we demonstrate that SRT scales to support interactive visualization and semantic segmentation of real-world outdoor environments using Street View imagery.
View details
Representation learning from videos in-the-wild: An object-centric approach
Rob Romijnders
Michael Tschannen
Josip Djolonga
Neil Houlsby
WACV (2021)
Preview abstract
We propose a method to learn image representations from uncurated videos. We combine a supervised loss from off-the-shelf object detectors and self-supervised losses which naturally arise from the video-shot-frame-object hierarchy present in each video. We report competitive results on 19 transfer learning tasks of the Visual Task Adaptation Benchmark (VTAB), and on 8 out-of-distribution-generalization tasks, and discuss the benefits and shortcomings of the proposed approach. In particular, it improves over the baseline on all 18/19 few-shot learning tasks and 8/8 out-of-distribution generalization tasks. Finally, we perform several ablation studies and analyze the impact of the pretrained object detector on the performance across this suite of tasks.
View details
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Dan Moldovan
Sylvain Gelly
Neil Houlsby
Conference on Computer Vision and Pattern Recognition (2021)
Preview abstract
Modern deep convolutional networks (CNNs) are often criticized for their failure to generalize under distributional shifts. However, several recent breakthroughs in transfer learning suggest that these networks can cope with severe distribution shifts and successfully adapt to new tasks from a few training examples. In this work we revisit the out-of-distribution and transfer performance of modern image classification CNNs and investigate the impact of the pre-training data scale, the model scale, and the data preprocessing pipeline. We find that increasing both the training set and model sizes significantly improve the robustness to distribution shifts. Furthermore, we show that, perhaps surprisingly, simple changes in the preprocessing such as modifying the image resolution can significantly mitigate robustness issues in some cases. Finally, we outline the shortcomings of existing robustness evaluation datasets and introduce a synthetic dataset for fine-grained robustness analysis.
View details
Preview abstract
We present an efficient and scalable algorithm for debiasing trained models, including deep neural networks (DNNs), which we prove to be near-optimal by bounding its excess Bayes risk. Unlike previous black-box reduction methods to cost-sensitive classification rules, the proposed algorithm operates on models that have been trained without having to retrain the model. Furthermore, as the algorithm is based on projected stochastic gradient descent (SGD), it is particularly attractive for deep learning applications. We empirically validate the proposed algorithm on standard benchmark datasets across both classical algorithms and modern DNN architectures and demonstrate that it outperforms previous post-processing approaches for unbiased classification.
View details