
Alan Karthikesalingam
Alan is a clinician and Research Scientist working on Foundation Models for health, most recently including Med-PaLM, Med-PaLM-2, Med-PaLM-Multimodal and AMIE. Prior to this his work at DeepMind and Google explored applications of AI in radiology, ophthalmology, dermatology and electronic health records, resulting in papers published in Nature and Nature Medicine. He is an honorary Lecturer in Vascular Surgery at Imperial College in London. He completed his MA in Neuroscience and Medical Degree (MBBChir) at the University of Cambridge before specialist training in surgery in the London Deanery, where he completed his Membership of the Royal College of Surgeons (MRCS), PhD in Vascular Surgery and was appointed as a NIHR Clinical Lecturer. In 2017 he joined DeepMind's health research team and in 2019 joined Google Health. Prior to joining Google he had published over 150 peer-reviewed articles including first-author studies in the New England Journal of Medicine and The Lancet.
Research Areas
Authored Publications
Sort By
Google
Generative AI for medical education: Insights from a case study with medical students and an AI tutor for clinical reasoning
Amy Wang
Roma Ruparel
Paul Jhun
Julie Anne Seguin
Patricia Strachan
Renee Wong
2025
Towards Conversational AI for Disease Management
Khaled Saab
David Stutz
Kavita Kulkarni
Sara Mahdavi
Joelle Barral
James Manyika
Ryutaro Tanno
Adam Rodman
arXiv (2025)
Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements
Abbi Ward
Jimmy Li
Julie Wang
Sriram Lakshminarasimhan
Ashley Carrick
Jay Hartford
Pradeep Kumar S
Sunny Virmani
Renee Wong
Margaret Ann Smith
Dawn Siegel
Steven Lin
Justin Ko
JAMA Network Open (2024)
Generative models improve fairness of medical classifiers under distribution shifts
Ira Ktena
Olivia Wiles
Isabela Albuquerque
Sylvestre-Alvise Rebuffi
Ryutaro Tanno
Danielle Belgrave
Taylan Cemgil
Nature Medicine (2024)
Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
Brenna Li
Amy Wang
Patricia Strachan
Julie Anne Seguin
Sami Lachgar
Karyn Schroeder
Renee Wong
Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
Understanding metric-related pitfalls in image analysis validation
Annika Reinke
Lena Maier-Hein
Paul Jager
Shravya Shetty
Understanding Metrics Workgroup
Nature Methods (2024)
An intentional approach to managing bias in embedding models
Atilla P. Kiraly
Jungyeon Park
Rory Pilgrim
Charles Lau
Heather Cole-Lewis
Shravya Shetty
Krish Eswaran
Leo Anthony Celi
The Lancet Digital Health, 6 (2024), E126-E130
Towards Generalist Biomedical AI
Danny Driess
Andrew Carroll
Chuck Lau
Ryutaro Tanno
Ira Ktena
Basil Mustafa
Aakanksha Chowdhery
Simon Kornblith
Philip Mansfield
Sushant Prakash
Renee Wong
Sunny Virmani
Sara Mahdavi
Bradley Green
Ewa Dominowska
Joelle Barral
Karan Singhal
Pete Florence
NEJM AI (2024)
Quantifying urban park use in the USA at scale: empirical estimates of realised park usage using smartphone location data
Michael T Young
Swapnil Vispute
Stylianos Serghiou
Akim Kumok
Yash Shah
Kevin J. Lane
Flannery Black-Ingersoll
Paige Brochu
Monica Bharel
Sarah Skenazy
Shailesh Bavadekar
Mansi Kansal
Evgeniy Gabrilovich
Gregory A. Wellenius
Lancet Planetary Health (2024)
Towards Conversational Diagnostic AI
Khaled Saab
Jan Freyberg
Ryutaro Tanno
Amy Wang
Brenna Li
Nenad Tomašev
Karan Singhal
Le Hou
Albert Webson
Kavita Kulkarni
Sara Mahdavi
Juro Gottweis
Joelle Barral
Kat Chou
Arxiv (2024) (to appear)