Radu Soricut
I am a Distinguished Scientist & Senior Research Director at Google DeepMind, leading teams that conduct natural language modeling and machine learning research and build large models, focusing on Multimodal (language & vision) understanding and generation. I completed my PhD at USC, where I worked with Daniel Marcu and Kevin Knight.
See also my personal webpage for more information.
See also my personal webpage for more information.
Authored Publications
Sort By
Preview abstract
Specialized Large multi-modal models (LMMs) have exhibited remarkable performance across numerous tasks, however, generalist LMMs suffer from performance degradation when training with a large collection of tasks. Recent research suggests Mixture of Experts (MoE) Models help instruction tuning, however, for LMMs of parameter size around O(50-100B), the prohibitive cost of replicating and storing the expert models severely limits the number of experts we can use.
We propose Omni-SMoLA that softly mixes many multimodal low rank experts to large models without introducing significant new parameter count compared to conventional MoE models. The core idea is that the large model provides a foundational backbone and different lightweight experts learn specialized knowledge residually. Extensive experiments demonstrate that the SMoLA approach helps improve the generalist performance across a broad range of visual question answering and captioning tasks, achieving a new state-of-the-art generalist performance that matches or outperforms single specialized LMM baselines.
View details
ImageInWords: Unlocking Hyper-Detailed Image Descriptions
Andrew Bunner
Ranjay Krishna
(2024)
Preview abstract
Despite the longstanding adage "an image is worth a thousand words," creating accurate and hyper-detailed image descriptions for training Vision-Language models remains challenging.
Current datasets typically have web-scraped descriptions that are short, low-granularity, and often contain details unrelated to the visual content. As a result, models trained on such data generate descriptions replete with missing information, visual inconsistencies, and hallucinations. To address these issues, we introduce ImageInWords (IIW), a carefully designed human-in-the-loop annotation framework for curating hyper-detailed image descriptions and a new dataset resulting from this process.
We validate the framework through evaluations focused on the quality of the dataset and its utility for fine-tuning with considerations for readability, comprehensiveness, specificity, hallucinations, and human-likeness. Our dataset significantly improves across these dimensions compared to recently released datasets (+66%) and GPT-4V outputs (+48%). Furthermore, models fine-tuned with IIW data excel by +31% against prior work along the same human evaluation dimensions. Given our fine-tuned models, we also evaluate text-to-image generation and vision-language reasoning. Our model's descriptions can generate images closest to the original, as judged by both automated and human metrics. We also find our model produces more compositionally rich descriptions, outperforming the best baseline by up to 6% on ARO, SVO-Probes, and Winoground datasets.
View details
PaLI-X: On Scaling up a Multilingual Vision and Language Model
Josip Djolonga
Piotr Padlewski
Basil Mustafa
Carlos Riquelme
Sebastian Goodman
Yi Tay
Siamak Shakeri
Daniel Salz
Michael Tschannen
Mandar Joshi
Filip Pavetić
Gang Li
Anurag Arnab
Yuanzhong Xu
Keran Rong
Neil Houlsby
Computer Vision and Pattern Recognition Conference (CVPR) (2024)
Preview abstract
We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.
View details
PaLI: A Jointly-Scaled Multilingual Language-Image Model
Piotr Padlewski
Daniel Salz
Sebastian Alexander Goodman
Basil Mustafa
Keran Rong
Hassan Akbari
Linting Xue
James Bradbury
Chao Jia
Carlos Riquelme
Neil Houlsby
International Conference on Learning Representations (ICLR) (2023)
Preview abstract
Effective scaling and a flexible task interface enable large-capacity language models to excel at many tasks. PaLI (Pathways Language and Image model) extends these ideas to the joint modeling of language and vision. PaLI is a model that generates text based on visual and textual inputs. Using this API, PaLI is able to perform many vision, language, and multimodal tasks, across many languages. We train PaLI with two main principles: reuse of pretrained unimodal components, and joint scaling of modalities. Using large-capacity pretrained language models and vision models allows us to capitalize on their existing capabilities, while leveraging the substantial cost of training them. We scale PaLI models across three axes:the language component, the vision component, and the training data that fuses them. For the vision component, we train the largest and best-performing VisionTransformer (ViT) to date. For the data, we build an image-text training set over10B images and covering over 100 languages.
PaLI inherits and enhances language-understanding capabilities, and achieves state-of-the-art in multiple vision and language tasks (image classification, image captioning, visual question-answering, scene-text understanding, etc.), based on a simple, modular, and reuse-friendly platform for modeling and scaling.
View details
Connecting Vision and Language with Video Localized Narratives
Vittorio Ferrari
IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) 2023 (to appear)
Preview abstract
We propose Video Localized Narratives, a new form of multimodal video annotations connecting vision and language. In the original Localized Narratives, annotators speak and move their mouse simultaneously on an image, thus grounding each word with a mouse trace segment. However, this is challenging on a video. Our new protocol empowers annotators to tell the story of a video with Localized Narratives, capturing even complex events involving multiple actors interacting with each other and with several passive objects. We annotated 20k videos of the OVIS, UVO, and Oops datasets, totalling 1.7M words. Based on this data, we also construct new benchmarks for the video narrative grounding and video question-answering tasks, and provide reference results from strong baseline models. Our annotations are available at https://google.github.io/video-localized-narratives/.
View details
PreSTU: Pre-Training for Scene-Text Understanding
Jihyung Kil
Sebastian Goodman
Wei-Lun Chao
ICCV (2023)
Preview abstract
The ability to recognize and reason about text embedded in visual inputs is often lacking in vision-and-language (V&L) models, perhaps because V&L pre-training methods have often failed to include such an ability in their training objective. In this paper, we propose PreSTU, a novel pre-training recipe dedicated to scene-text understanding (STU). PreSTU introduces OCR-aware pre-training objectives that encourage the model to recognize text from an image and connect it to the rest of the image content. We implement PreSTU using a simple transformer-based encoder-decoder architecture, combined with large-scale image-text datasets with scene text obtained from an off-the-shelf OCR system. We empirically demonstrate the effectiveness of this pre-training approach on eight visual question answering and four image captioning benchmarks.
View details
MaXM: Towards Multilingual Visual Question Answering
Linting Xue
Michal Yarom
Findings of ACL: EMNLP (2023)
Preview abstract
Visual Question Answering (VQA) has been primarily studied through the lens of the English language. Yet, tackling VQA in other languages in the same manner would require a considerable amount of resources. In this paper, we propose scalable solutions to multilingual visual question answering (mVQA), on both data and modeling fronts. We first propose a translation-based framework to mVQA data generation that requires much less human annotation efforts than the conventional approach of directly collection questions and answers. Then, we apply our framework to the multilingual captions in the Crossmodal-3600 dataset and develop an efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 diverse languages. Finally, we develop a simple, lightweight, and effective approach as well as benchmark state-of-the-art English and multilingual VQA models. We hope that our benchmark encourages further research on mVQA.
View details
Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting
Su Wang
Chitwan Saharia
Shai Noy
Stefano Pellegrini
Sarah Laszlo
Mohammad Norouzi
Peter Anderson
William Chan
CVPR (2023)
Preview abstract
Text-guided image editing can have a transformative impact in supporting creative applications. A key challenge is to generate edits that are faithful to the input text prompt, while consistent with the input image. We present Imagen Editor, a cascaded diffusion model, built by fine-tuning Imagen on text-guided image inpainting. Imagen Editor's edits are faithful to the text prompts, which is accomplished by incorporating object detectors for proposing inpainting masks during training. In addition, text-guided image inpainting captures fine details in the input image by conditioning the cascaded pipeline on the original high resolution image. To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting. EditBench evaluates inpainting edits on natural and generated images exploring objects, attributes, and scenes. Through extensive human evaluation on EditBench, we find that object-masking during training leads to across-the-board improvements in text-image alignment -- such that Imagen Editor is preferred over DALL-E 2 and Stable Diffusion -- and, as a cohort, these models are better at object-rendering than text-rendering, and handle material/color/size attributes better than count/shape attributes.
View details
Preview abstract
Research in massively multilingual image captioning has been severely hampered by a lack of
high-quality evaluation datasets. In this paper we present the Crossmodal-3600 dataset (XM3600 in short), a geographically-diverse set of 3600 images annotated with human-generated reference captions in 36 languages. The images were selected from across the world, covering regions where the 36 languages are spoken, and annotated with captions that achieve consistency in terms of style across all languages, while avoiding annotation artifacts due to direct translation. We apply this benchmark to model selection for massively multilingual image captioning models, and show strong correlation results with human evaluations when using XM3600 as golden references for automatic metrics.
View details
Preview abstract
Visual Question Answering (VQA) has benefited from increasingly sophisticated models, but has not enjoyed the same level of engagement in terms of data creation. In this paper, we propose a method that automatically derives VQA examples at volume, by leveraging the abundance of existing image-caption annotations combined with neural models for textual question generation. We show that the resulting data is of high-quality. VQA models trained on our data improve state-of-the-art zero-shot accuracy by double digits and achieve a level of robustness that lacks in the same model trained on human-annotated VQA data.
View details