Kenton Lee
My research focuses on natural language understanding and machine learning. Prior to joining Google, I completed my PhD at the University of Washington while working with Luke Zettlemoyer.
Research Areas
Authored Publications
Sort By
PaLI-X: On Scaling up a Multilingual Vision and Language Model
Josip Djolonga
Piotr Padlewski
Basil Mustafa
Carlos Riquelme
Sebastian Goodman
Yi Tay
Siamak Shakeri
Daniel Salz
Michael Tschannen
Mandar Joshi
Filip Pavetić
Gang Li
Anurag Arnab
Yuanzhong Xu
Keran Rong
Neil Houlsby
Computer Vision and Pattern Recognition Conference (CVPR) (2024)
Preview abstract
We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.
View details
Preview abstract
Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.
View details
DePlot: One-shot visual language understanding by plot-to-text translation
Chenxi Pang
Mandar Joshi
Nigel Collier
Under review (2022)
Preview abstract
Visual language such as charts and plots are ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art models are end-to-end multimodal Transformers pretrained with dedicated plot derendering and numerical reasoning objectives. However, the models reasoning capabilities still fall short and will generally fail on complex queries.
In this paper, we decompose the multimodal reasoning problem into first, a modality conversion problem from image to text, then a purely textual reasoning problem. Through combining a pretrained image-to-text model and an LLM for the task of chart/figure reasoning. Compared with a SOTA model finetuned on >10k data points, our plug-and-play model DePlot-LLM achieves >20% improvement over finetuned SOTA with just one-shot prompting.
View details
MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering
Chenxi Pang
Mandar Joshi
Nigel Collier
Under review (2022)
Preview abstract
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose a set of pretraining tasks to enhance visual language models' capabilities in jointly modeling charts/plots and language data. We initialize with Pix2Struct, a recently proposed image-to-text visual language model and continue pretraining with our proposed objectives. We argue that numerical reasoning and plot deconstruction enable a model with the key capabilities of (1) extracting key information and (2) reasoning on the extracted information. On standard benchmarks such as PlotQA and ChartQA, our continually pretrained MatCha model outperforms state-of-the-art methods by as much as ~20%. We also examine how well does MatCha pretraining transfer to domains such as screenshot, textbook, and poster figures. We observe improvement over the base Pix2Struct checkpoint by 1.2% on average, verifying the usefulness of MatCha pretraining on broader visual language tasks.
View details
Preview abstract
We address the problem of extractive question answering using document-level distant super-vision, pairing questions and relevant documents with answer strings. We compare previously used probability space and distant super-vision assumptions (assumptions on the correspondence between the weak answer string labels and possible answer mention spans). We show that these assumptions interact, and that different configurations provide complementary benefits. We demonstrate that a multi-objective model can efficiently combine the advantages of multiple assumptions and out-perform the best individual formulation. Our approach outperforms previous state-of-the-art models by 4.3 points in F1 on TriviaQA-Wiki and 1.7 points in Rouge-L on NarrativeQA summaries.
View details
Preview abstract
We study the task of cross-database semantic parsing (XSP), where a system that maps natural language utterances to executable SQL queries is evaluated on databases unseen during training. Recently, several datasets, including Spider, were proposed to support development of XSP systems. We propose a challenging evaluation setup for cross-database semantic parsing, focusing on variation across database schemas and in-domain language use. We re-purpose eight semantic parsing datasets that have been well-studied in the setting where in-domain training data is available, and instead use them as additional evaluation data for XSP systems instead. We build a system that performs well on Spider, and find that it struggles to generalize to our re-purposed set. Our setup uncovers several generalization challenges for cross-database semantic parsing, demonstrating the need to use and develop diverse training and evaluation datasets.
View details
Retrieval Augmented Language Model Pre-Training
Zora Tung
Panupong Pasupat
Ming-Wei Chang
Proceedings of the 37th International Conference on Machine Learning (2020) (to appear)
Preview abstract
Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts.
To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents.
We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.
View details
Natural Questions: a Benchmark for Question Answering Research
Olivia Redfield
Danielle Epstein
Illia Polosukhin
Matthew Kelcey
Jacob Devlin
Llion Jones
Ming-Wei Chang
Jakob Uszkoreit
Transactions of the Association of Computational Linguistics (2019) (to appear)
Preview abstract
We present the Natural Questions corpus, a question answering dataset. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations, 7,830 examples with 5-way annotations for development data, and a further 7,842 examples 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.
View details
Zero-shot Entity Linking by Reading Entity Descriptions
Lajanugen Logeswaran
Ming-Wei Chang
Jacob Devlin
Honglak Lee
ACL 2019
Preview abstract
We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pretrained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pretraining strategy, which we term domain-adaptive pretraining (DAP), to address the domain shift problem associated with linking
unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pretraining baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.
View details
Preview abstract
Reading comprehension models have been successfully applied to extractive text answers, but it is unclear how best to generalize these models to abstractive numerical answers. We enable a BERT-based reading comprehension model to perform lightweight numerical reasoning. We augment the model with a predefined set of executable 'programs' which encompass simple arithmetic as well as extraction. Rather than having to learn to manipulate numbers directly, the model can pick a program and execute it. On the recent Discrete Reasoning Over Passages (DROP) dataset, designed to challenge reading comprehension models, we show a 33% absolute improvement by adding shallow programs. The model can learn to predict new operations when appropriate in a math word problem setting (Roy and Roth, 2015) with very few training examples.
View details