Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10174 publications
Preview abstract
Storage on Android has evolved significantly over
the years, with each new Android version introducing changes
aimed at enhancing usability, security, and privacy. While these
updates typically help with restricting app access to storage
through various mechanisms, they may occasionally introduce
new complexities and vulnerabilities. A prime example is the
introduction of scoped storage in Android 10, which fundamen-
tally changed how apps interact with files. While intended to
enhance user privacy by limiting broad access to shared storage,
scoped storage has also presented developers with new challenges
and potential vulnerabilities to address. However, despite its
significance for user privacy and app functionality, no systematic
studies have been performed to study Android’s scoped storage
at depth from a security perspective.
In this paper, we present the first systematic security analysis
of the scoped storage mechanism. To this end, we design and
implement a testing tool, named ScopeVerif, that relies on
differential analysis to uncover security issues and implementation inconsistencies in Android’s storage. Specifically, ScopeVerif
takes a list of security properties and checks if there are any
file operations that violate any security properties defined in
the official Android documentation. Additionally, we conduct a
comprehensive analysis across different Android versions as well
as a cross-OEM analysis to identify discrepancies in different
implementations and their security implications.
Our study identifies both known and unknown issues of scoped
storage. Our cross-version analysis highlights undocumented
changes as well as partially fixed security loopholes across
versions. Additionally, we discovered several vulnerabilities in
scoped storage implementations by different OEMs. These vulnerabilities stem from deviations from the documented and
correct behavior, which potentially poses security risks. The
affected OEMs and Google have acknowledged our findings and
offered us bug bounties in response.
View details
Preview abstract
The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally
productive.
The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter.
As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case.
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Marc Stogaitis
Youngmin Cho
Richard Allen
Patrick Robertson
Robert Bosch
Nivetha Thiruverahan
Alexei Barski
Tajinder Gadh
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Preview abstract
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma.
View details
From Provenance to Aberrations: Image Creator and Screen Reader User Perspectives on Alt Text for AI-Generated Images
Maitraye Das
Alexander J. Fiannaca
CHI Conference on Human Factors in Computing Systems (2024)
Preview abstract
AI-generated images are proliferating as a new visual medium. However, state-of-the-art image generation models do not output alternative (alt) text with
their images, rendering them largely inaccessible to screen reader users (SRUs). Moreover, less is known about what information would be most desirable
to SRUs in this new medium. To address this, we invited AI image creators and SRUs to evaluate alt text prepared from various sources and write their own
alt text for AI images. Our mixed-methods analysis makes three contributions. First, we highlight creators’ perspectives on alt text, as creators are well-positioned
to write descriptions of their images. Second, we illustrate SRUs’ alt text needs particular to the emerging medium of AI images. Finally, we discuss the
promises and pitfalls of utilizing text prompts written as input for AI models in alt text generation, and areas where broader digital accessibility guidelines
could expand to account for AI images.
View details
Language Model Cascades: Token-Level Uncertainty And Beyond
Neha Gupta
Aditya Menon
International Conference on Learning Representations (2024)
Preview abstract
Recent advances in language model (LM) design has yielded a series of models with remarkably improved quality on complex NLP tasks, but significantly in-creased inference cost. A simple strategy to achieve more favourable cost-quality tradeoffs is cascading: here, a small model is invoked for most “easy” instances, while a large model is invoked for a few “hard” instances. Typically, “easy” in-stances are those where the small model has high confidence in its prediction.While the principles underpinning effective cascading are well-studied for classification problems, a similar understanding is lacking for generative tasks. The ex-tension of simple ”Chow” rule which defers based on the probability of predicting an answer is not straightforward for generative tasks where the number of output tokens is variable. Moreover, LMs are known to suffer from length bias where longer answers are penalized more as compared to shorter answers which complicates things further. In this work, we initiate a systematic study of deferral rules for cascades for language models. For example, how does one best summarise model confidence across a variable number of output tokens? We show experimentally that there is no one straight forward extension of probability based uncertainty for LMs which works well across all tasks. Via experiments on a range of bench-marks with FLAN-T5 models, we find that incorporating token-level uncertainty can significantly improve the cost-quality tradeoff of cascades. We further show that incorporating embeddings from the smaller model and intermediate layer embeddings from the larger model can further boost performance
View details
See Through Vehicles: Fully Occluded Vehicle Detection with Millimeter Wave Radar
Chenming He
Chengzhen Meng
Chunwang He
Beibei Wang
Yubo Yan
Yanyong Zhang
MobiCom 2024: The 30th Annual International Conference On Mobile Computing And Networking
Preview abstract
A crucial task in autonomous driving is to continuously detect nearby vehicles. Problems thus arise when a vehicle is occluded and becomes “unseeable”, which may lead to accidents. In this study, we develop mmOVD, a system that can detect fully occluded vehicles by involving millimeter-wave radars to capture the ground-reflected signals passing beneath the blocking vehicle’s chassis. The foremost challenge here is coping with ghost points caused by frequent multi-path reflections, which highly resemble the true points. We devise a set of features that can efficiently distinguish the ghost points by exploiting the neighbor points’ spatial and velocity distributions. We also design a cumulative clustering algorithm to effectively aggregate the unstable ground reflected radar points over consecutive frames to derive the bounding boxes of the vehicles.
We have evaluated mmOVD in both controlled environments and real-world environments. In an underground garage and two campus roads, we conducted controlled experiments in 56 scenes with 8 vehicles, including a minibus and a motorcycle. Our system accurately detects occluded vehicles for the first time, with a 91.1% F1 score for occluded vehicle detection and a 100% success rate for occlusion event detection. More importantly, we drove 324km on crowded roads at a speed up to 70km per hour and show we could achieve an occlusion detection success rate of 92% and a low false alarm rate of 4% with only 10% of the training data in complex real-world environments.
View details
Preview abstract
A lexicographic maximum of a set $X \subseteq R^n$ is a vector in $X$ whose smallest component is as large as possible, and subject to that requirement, whose second smallest component is as large as possible, and so on for the third smallest component, etc. Lexicographic maximization has numerous practical and theoretical applications, including fair resource allocation, analyzing the implicit regularization of learning algorithms, and characterizing refinements of game-theoretic equilibria. We prove that a minimizer in $X$ of the exponential loss function $L_c(x) = \sum_i \exp(-c x_i)$ converges to a lexicographic maximum of $X$ as $c \rightarrow \infty$, provided that $X$ is stable in the sense that a well-known iterative method for finding a lexicographic maximum of $X$ cannot be made to fail simply by reducing the required quality of each iterate by an arbitrarily tiny degree. Our result holds for both near and exact minimizers of the exponential loss, while earlier convergence results made much stronger assumptions about the set $X$ and only held for the exact minimizer. We are aware of no previous results showing a connection between the iterative method for computing a lexicographic maximum and exponential loss minimization. We show that every convex polytope is stable, but that there exist compact, convex sets that are not stable. We also provide the first analysis of the convergence rate of an exponential loss minimizer (near or exact) and discover a curious dichotomy: While the two smallest components of the vector converge to the lexicographically maximum values very quickly (at roughly the rate $(\log n)/c$), all other components can converge arbitrarily slowly.
View details
Sandwiched Compression: Repurposing Standard Codecs with Neural Network Wrappers
Phil A. Chou
Hugues Hoppe
Danhang Tang
Jonathan Taylor
Philip Davidson
arXiv:2402.05887 (2024)
Preview abstract
We propose sandwiching standard image and video codecs between pre- and post-processing neural networks. The networks are jointly trained through a differentiable codec proxy to minimize a given rate-distortion loss. This sandwich architecture not only improves the standard codec’s performance on its intended content, it can effectively adapt the codec to other types of image/video content and to other distortion measures. Essentially, the sandwich learns to transmit “neural code images” that optimize overall rate-distortion performance even when the overall problem is well outside the scope of the codec’s design. Through a variety of examples, we apply the sandwich architecture to sources with different numbers of channels, higher resolution, higher dynamic range, and perceptual distortion measures. The results demonstrate substantial improvements (up to 9 dB gains or up to 3 adaptations. We derive VQ equivalents for the sandwich, establish optimality properties, and design differentiable codec proxies approximating current standard codecs. We further analyze model complexity, visual quality under perceptual metrics, as well as sandwich configurations that offer interesting potentials in image/video compression and streaming.
View details
Individual Welfare Guarantees in the Autobidding World with Machine-learned Advice
Negin Golrezaei
Patrick Jaillet
Jason Cheuk Nam Liang
Proceedings of the ACM on Web Conference 2024, 267–275
Preview abstract
Online advertising channels commonly focus on maximizing total advertiser welfare to enhance channel health, and previous literature has studied augmenting ad auctions with machine learning predictions on advertiser values (also known asmachine-learned advice ) to improve total welfare. Yet, such improvements could come at the cost of individual bidders' welfare and do not shed light on how particular advertiser bidding strategies impact welfare. Motivated by this, we present an analysis on an individual bidder's welfare loss in the autobidding world for auctions with and without machine-learned advice, and also uncover how advertiser strategies relate to such losses. In particular, we demonstrate how ad platforms can utilize ML advice to improve welfare guarantee on the aggregate and individual bidder level by setting ML advice as personalized reserve prices when the platform consists ofautobidders who maximize value while respecting a return on ad spend (ROAS) constraint. Under parallel VCG auctions with such ML advice-based reserves, we present a worst-case welfare lower-bound guarantee for an individual autobidder, and show that the lower-bound guarantee is positively correlated with ML advice quality as well as the scale of bids induced by the autobidder's bidding strategies. Further, we show that no truthful, and possibly randomized mechanism with anonymous allocations can achieve universally better individual welfare guarantees than VCG, in the presence of personalized reserves based on ML-advice of equal quality. Moreover, we extend our individual welfare guarantee results to generalized first price (GFP) and generalized second price (GSP) auctions. Finally, we present numerical studies using semi-synthetic data derived from ad auction logs of a search ad platform to showcase improvements in individual welfare when setting personalized reserve prices with ML-advice.
View details
Uncertainty quantification in coupled wildfire-atmosphere simulations at scale
Paul Schwerdtner
Frederick Law
Cenk Gazen
Yi-fan Chen
Matthias Ihme
Benjamin Peherstorfer
PNAS Nexus (2024)
Preview abstract
Uncertainties in wildfire simulations pose a major challenge for making decisions about fire management, mitigation, and evacuations. However, ensemble calculations to quantify uncertainties are prohibitively expensive with high-fidelity models that are needed to capture today’s ever more intense and severe wildfires. This work shows that surrogate models trained on related data enable scaling multi-fidelity uncertainty quantification to high-fidelity wildfire simulations of unprecedented scale with billions of degrees of freedom. The key insight is that correlation is all that matters while bias is irrelevant for speeding up uncertainty quantification when surrogate models are combined with high-fidelity models in multi-fidelity approaches. This allows the surrogate models to be trained on abundantly available or cheaply generated related data samples that can be strongly biased as long as they are correlated to predictions of high-fidelity simulations. Numerical results with scenarios of the Tubbs 2017 wildfire demonstrate that surrogate models trained on related data make multi-fidelity uncertainty quantification in large-scale wildfire simulations practical by reducing the training time by several orders of magnitude from three months to under three hours and predicting the burned area at least twice as accurately compared to using high-fidelity simulations alone for a fixed computational budget. More generally, the results suggest that leveraging related data can greatly extend the scope of surrogate modeling, potentially benefiting other fields that require uncertainty quantification in computationally expensive high-fidelity simulations.
View details
Factual and Personalized Recommendation Language Modeling with Reinforcement Learning
Jihwan Jeong
Mohammad Ghavamzadeh
Proceedings of the First Conference on Language Modeling (COLM-24), Philadelphia (2024)
Preview abstract
Recommender systems (RSs) play a central role in connecting users to products, content and services by matching candidate items to users based on their preferences. While existing RSs often rely on implicit user feedback on recommended items (e.g., clicks, watches, ratings), conversational recommender systems are interacting with users to provide tailored recommendations in natural language. In this work, we aim to develop a recommender language model (LM) that is capable of generating compelling endorsement presentations of relevant items to users, to better explain the details of the items, to connect the items with users’ preferences, and to enhance the likelihood of users accepting recommendations. Specifically, such an LLM-based recommender can understand users’ preferences from users’ RS embeddings summarizing feedback history, output corresponding responses that not only are factually-grounded, but also explain whether these items satisfy users’ preferences in a convincing manner. The pivotal question is how one can gauge the performance of such a LLM recommender. Equipped with a joint reward function that measures factual consistency, convincingness, and personalization, not only can we evaluate the efficacies of different recommender LMs, but we can also utilize this metric as a form of AI feedback to fine-tune our LLM agent via reinforcement learning (RL). Building upon the MovieLens movie recommendation benchmark, we developed a novel conversational recommender delivering personalized movie narratives to users. This work lays the groundwork for recommendation systems that prioritize individualized user experiences without compromising on transparency and integrity.
View details
DiffHuman: Probabilistic Photorealistic 3D Reconstruction of Humans
Akash Sengupta
Enric Corona
Andrei Zanfir
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Preview abstract
We present DiffHuman, a probabilistic method for photorealistic 3D human reconstruction from a single RGB image. Despite the ill-posed nature of this problem, most methods are deterministic and output a single solution, often resulting in a lack of geometric detail and blurriness in unseen or uncertain regions. In contrast, DiffHuman predicts a distribution over 3D reconstructions conditioned on an image, which allows us to sample multiple detailed 3D avatars that are consistent with the input image. DiffHuman is implemented as a conditional diffusion model that denoises partial observations of an underlying pixel-aligned 3D representation. In testing, we can sample a 3D shape by iteratively denoising renderings of the predicted intermediate representation. Further, we introduce an additional generator neural network that approximates rendering with considerably reduced runtime (55x speed up), resulting in a novel dual-branch diffusion framework. We evaluate the effectiveness of our approach through various experiments. Our method can produce diverse, more detailed reconstructions for the parts of the person not observed in the image, and has competitive performance for the surface reconstruction of visible parts.
View details
Optimizing quantum gates towards the scale of logical qubits
Alexandre Bourassa
Andrew Dunsworth
Will Livingston
Vlad Sivak
Trond Andersen
Yaxing Zhang
Desmond Chik
Jimmy Chen
Charles Neill
Alejo Grajales Dau
Anthony Megrant
Alexander Korotkov
Vadim Smelyanskiy
Yu Chen
Nature Communications, 15 (2024), pp. 2442
Preview abstract
A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ~3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to a variety of quantum operations, algorithms, and computing architectures.
View details
Towards Conversational Diagnostic AI
Anil Palepu
Khaled Saab
Jan Freyberg
Ryutaro Tanno
Amy Wang
Brenna Li
Nenad Tomašev
Karan Singhal
Le Hou
Albert Webson
Kavita Kulkarni
Sara Mahdavi
Juro Gottweis
Joelle Barral
Kat Chou
Arxiv (2024) (to appear)
Preview abstract
At the heart of medicine lies the physician-patient dialogue, where skillful history-taking paves the way for accurate diagnosis, effective management, and enduring trust. Artificial Intelligence (AI) systems capable of diagnostic dialogue could increase accessibility, consistency, and quality of care. However, approximating clinicians' expertise is an outstanding grand challenge. Here, we introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue.
AMIE uses a novel self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions, specialties, and contexts. We designed a framework for evaluating clinically-meaningful axes of performance including history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy. We compared AMIE's performance to that of primary care physicians (PCPs) in a randomized, double-blind crossover study of text-based consultations with validated patient actors in the style of an Objective Structured Clinical Examination (OSCE). The study included 149 case scenarios from clinical providers in Canada, the UK, and India, 20 PCPs for comparison with AMIE, and evaluations by specialist physicians and patient actors. AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors. Our research has several limitations and should be interpreted with appropriate caution. Clinicians were limited to unfamiliar synchronous text-chat which permits large-scale LLM-patient interactions but is not representative of usual clinical practice. While further research is required before AMIE could be translated to real-world settings, the results represent a milestone towards conversational diagnostic AI.
View details