Rory Sayres

Rory Sayres

Rory is a researcher in the Google Health AI group. He focuses on intelligence augmentation of medical experts using machine-learning-based assistance. His background includes neuroscience and human/computer interaction. He has previously studied the human visual system using methods including psychophysics and functional magnetic resonance imaging.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Background: Skin conditions are extremely common worldwide, and are an important cause of both anxiety and morbidity. Since the advent of the internet, individuals have used text-based search (eg, “red rash on arm”) to learn more about concerns on their skin, but this process is often hindered by the inability to accurately describe the lesion’s morphology. In the study, we surveyed respondents’ experiences with an image-based search, compared to the traditional text-based search experience. Methods: An internet-based survey was conducted to evaluate the experience of text-based vs image-based search for skin conditions. We recruited respondents from an existing cohort of volunteers in a commercial survey panel; survey respondents that met inclusion/exclusion criteria, including willingness to take photos of a visible concern on their body, were enrolled. Respondents were asked to use the Google mobile app to conduct both regular text-based search (Google Search) and image-based search (Google Lens) for their concern, with the order of text vs. image search randomized. Satisfaction for each search experience along six different dimensions were recorded and compared, and respondents’ preferences for the different search types along these same six dimensions were recorded. Results: 372 respondents were enrolled in the study, with 44% self-identifying as women, 86% as White and 41% over age 45. The rate of respondents who were at least moderately familiar with searching for skin conditions using text-based search versus image-based search were 81.5% and 63.5%, respectively. After using both search modalities, respondents were highly satisfied with both image-based and text-based search, with >90% at least somewhat satisfied in each dimension and no significant differences seen between text-based and image-based search when examining the responses on an absolute scale per search modality. When asked to directly rate their preferences in a comparative way, survey respondents preferred image-based search over text-based search in 5 out of 6 dimensions, with an absolute 9.9% more preferring image-based search over text-based search overall (p=0.004). 82.5% (95% CI 78.2 - 86.3) reported a preference to leverage image-based search (alone or in combination with text-based search) in future searches. Of those who would prefer to use a combination of both, 64% indicated they would like to start with image-based search, indicating that image-based search may be the preferred entry point for skin-related searches. Conclusion: Despite being less familiar with image-based search upon study inception, survey respondents generally preferred image-based search to text-based search and overwhelmingly wanted to include this in future searches. These results suggest the potential for image-based search to play a key role in people searching for information regarding skin concerns. View details
    Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
    Brenna Li
    Amy Wang
    Patricia Strachan
    Julie Anne Seguin
    Sami Lachgar
    Karyn Schroeder
    Renee Wong
    Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
    Preview abstract Although skin concerns are common, access to specialist care is limited. Artificial intelligence (AI)-assisted tools to support medical decisions may provide patients with feedback on their concerns while also helping ensure the most urgent cases are routed to dermatologists. Although AI-based conversational agents have been explored recently, how they are perceived by patients and clinicians is not well understood. We conducted a Wizard-of-Oz study involving 18 participants with real skin concerns. Participants were randomly assigned to interact with either a clinician agent (portrayed by a dermatologist) or an LLM agent (supervised by a dermatologist) via synchronous multimodal chat. In both conditions, participants found the conversation to be helpful in understanding their medical situation and alleviate their concerns. Through qualitative coding of the conversation transcripts, we provide insight on the importance of empathy and effective information-seeking. We conclude with design considerations for future AI-based conversational agents in healthcare settings. View details
    Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians
    Mark Chia
    Fred Hersch
    Pearse Keane
    Angus Turner
    British Journal of Ophthalmology, 108 (2024), pp. 268-273
    Preview abstract Background/aims: Deep learning systems (DLSs) for diabetic retinopathy (DR) detection show promising results but can underperform in racial and ethnic minority groups, therefore external validation within these populations is critical for health equity. This study evaluates the performance of a DLS for DR detection among Indigenous Australians, an understudied ethnic group who suffer disproportionately from DR-related blindness. Methods: We performed a retrospective external validation study comparing the performance of a DLS against a retinal specialist for the detection of more-than-mild DR (mtmDR), vision-threatening DR (vtDR) and all-cause referable DR. The validation set consisted of 1682 consecutive, single-field, macula-centred retinal photographs from 864 patients with diabetes (mean age 54.9 years, 52.4% women) at an Indigenous primary care service in Perth, Australia. Three-person adjudication by a panel of specialists served as the reference standard. Results: For mtmDR detection, sensitivity of the DLS was superior to the retina specialist (98.0% (95% CI, 96.5 to 99.4) vs 87.1% (95% CI, 83.6 to 90.6), McNemar’s test p<0.001) with a small reduction in specificity (95.1% (95% CI, 93.6 to 96.4) vs 97.0% (95% CI, 95.9 to 98.0), p=0.006). For vtDR, the DLS’s sensitivity was again superior to the human grader (96.2% (95% CI, 93.4 to 98.6) vs 84.4% (95% CI, 79.7 to 89.2), p<0.001) with a slight drop in specificity (95.8% (95% CI, 94.6 to 96.9) vs 97.8% (95% CI, 96.9 to 98.6), p=0.002). For all-cause referable DR, there was a substantial increase in sensitivity (93.7% (95% CI, 91.8 to 95.5) vs 74.4% (95% CI, 71.1 to 77.5), p<0.001) and a smaller reduction in specificity (91.7% (95% CI, 90.0 to 93.3) vs 96.3% (95% CI, 95.2 to 97.4), p<0.001). Conclusion: The DLS showed improved sensitivity and similar specificity compared with a retina specialist for DR detection. This demonstrates its potential to support DR screening among Indigenous Australians, an underserved population with a high burden of diabetic eye disease. View details
    Preview abstract Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and our dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed by narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an artificial intelligence (AI) system promotes equitable health outcomes, we hope that it can be leveraged and built upon toward a shared goal of LLMs that promote accessible and equitable healthcare. View details
    Differences between Patient and Clinician Submitted Images: Implications for Virtual Care of Skin Conditions
    Rajeev Rikhye
    Grace Eunhae Hong
    Margaret Ann Smith
    Aaron Loh
    Vijaytha Muralidharan
    Doris Wong
    Michelle Phung
    Nicolas Betancourt
    Bradley Fong
    Rachna Sahasrabudhe
    Khoban Nasim
    Alec Eschholz
    Kat Chou
    Peggy Bui
    Justin Ko
    Steven Lin
    Mayo Clinic Proceedings: Digital Health (2024)
    Preview abstract Objective: To understand and highlight the differences in clinical, demographic, and image quality characteristics between patient-taken (PAT) and clinic-taken (CLIN) photographs of skin conditions. Patients and Methods: This retrospective study applied logistic regression to data from 2500 deidentified cases in Stanford Health Care’s eConsult system, from November 2015 to January 2021. Cases with undiagnosable or multiple conditions or cases with both patient and clinician image sources were excluded, leaving 628 PAT cases and 1719 CLIN cases. Demographic characteristic factors, such as age and sex were self-reported, whereas anatomic location, estimated skin type, clinical signs and symptoms, condition duration, and condition frequency were summarized from patient health records. Image quality variables such as blur, lighting issues and whether the image contained skin, hair, or nails were estimated through a deep learning model. Results: Factors that were positively associated with CLIN photographs, post-2020 were as follows: age 60 years or older, darker skin types (eFST V/VI), and presence of skin growths. By contrast, factors that were positively associated with PAT photographs include conditions appearing intermittently, cases with blurry photographs, photographs with substantial nonskin (or nail/hair) regions and cases with more than 3 photographs. Within the PAT cohort, older age was associated with blurry photographs. Conclusion: There are various demographic, clinical, and image quality characteristic differences between PAT and CLIN photographs of skin concerns. The demographic characteristic differences present important considerations for improving digital literacy or access, whereas the image quality differences point to the need for improved patient education and better image capture workflows, particularly among elderly patients. View details
    Preview abstract Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering. View details
    Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study
    Dr. Paisan Raumviboonsuk
    Variya Nganthavee
    Kornwipa Hemarat
    Apinpat Kongprayoon
    Rajiv Raman
    Brian Levinstein
    Roy Lee
    Sunny Virmani
    John Chambers
    Fred Hersch
    Lily Hao Yi Peng
    The Lancet Digital Health (2022)
    Preview abstract Background: Diabetic retinopathy is a leading cause of preventable blindness, especially in low-income and middle-income countries (LMICs). Deep-learning systems have the potential to enhance diabetic retinopathy screenings in these settings, yet prospective studies assessing their usability and performance are scarce. Methods: We did a prospective interventional cohort study to evaluate the real-world performance and feasibility of deploying a deep-learning system into the health-care system of Thailand. Patients with diabetes and listed on the national diabetes registry, aged 18 years or older, able to have their fundus photograph taken for at least one eye, and due for screening as per the Thai Ministry of Public Health guidelines were eligible for inclusion. Eligible patients were screened with the deep-learning system at nine primary care sites under Thailand's national diabetic retinopathy screening programme. Patients with a previous diagnosis of diabetic macular oedema, severe non-proliferative diabetic retinopathy, or proliferative diabetic retinopathy; previous laser treatment of the retina or retinal surgery; other non-diabetic retinopathy eye disease requiring referral to an ophthalmologist; or inability to have fundus photograph taken of both eyes for any reason were excluded. Deep-learning system-based interpretations of patient fundus images and referral recommendations were provided in real time. As a safety mechanism, regional retina specialists over-read each image. Performance of the deep-learning system (accuracy, sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) were measured against an adjudicated reference standard, provided by fellowship-trained retina specialists. This study is registered with the Thai national clinical trials registry, TCRT20190902002. Findings: Between Dec 12, 2018, and March 29, 2020, 7940 patients were screened for inclusion. 7651 (96·3%) patients were eligible for study analysis, and 2412 (31·5%) patients were referred for diabetic retinopathy, diabetic macular oedema, ungradable images, or low visual acuity. For vision-threatening diabetic retinopathy, the deep-learning system had an accuracy of 94·7% (95% CI 93·0–96·2), sensitivity of 91·4% (87·1–95·0), and specificity of 95·4% (94·1–96·7). The retina specialist over-readers had an accuracy of 93·5 (91·7–95·0; p=0·17), a sensitivity of 84·8% (79·4–90·0; p=0·024), and specificity of 95·5% (94·1–96·7; p=0·98). The PPV for the deep-learning system was 79·2 (95% CI 73·8–84·3) compared with 75·6 (69·8–81·1) for the over-readers. The NPV for the deep-learning system was 95·5 (92·8–97·9) compared with 92·4 (89·3–95·5) for the over-readers. Interpretation: A deep-learning system can deliver real-time diabetic retinopathy detection capability similar to retina specialists in community-based screening settings. Socioenvironmental factors and workflows must be taken into consideration when implementing a deep-learning system within a large-scale screening programme in LMICs. Funding: Google and Rajavithi Hospital, Bangkok, Thailand. View details
    Preview abstract Background: Many dermatologic cases are first evaluated by primary care physicians or nurse practitioners. Objective: This study aimed to evaluate an artificial intelligence (AI)-based tool that assists with interpreting dermatologic conditions. Methods: We developed an AI-based tool and conducted a randomized multi-reader, multi-case study (20 primary care physicians, 20 nurse practitioners, and 1047 retrospective teledermatology cases) to evaluate its utility. Cases were enriched and comprised 120 skin conditions. Readers were recruited to optimize for geographical diversity; the primary care physicians practiced across 12 states (2-32 years of experience, mean 11.3 years), and the nurse practitioners practiced across 9 states (2-34 years of experience, mean 13.1 years). To avoid memory effects from incomplete washout, each case was read once by each clinician either with or without AI assistance, with the assignment randomized. The primary analyses evaluated the top-1 agreement, defined as the agreement rate of the clinicians’ primary diagnosis with the reference diagnoses provided by a panel of dermatologists (per case: 3 dermatologists from a pool of 12, practicing across 8 states, with 5-13 years of experience, mean 7.2 years of experience). We additionally conducted subgroup analyses stratified by cases’ self-reported race and ethnicity and measured the performance spread: the maximum performance subtracted by the minimum across subgroups. Results: The AI’s standalone top-1 agreement was 63%, and AI assistance was significantly associated with higher agreement with reference diagnoses. For primary care physicians, the increase in diagnostic agreement was 10% (P<.001), from 48% to 58%; for nurse practitioners, the increase was 12% (P<.001), from 46% to 58%. When stratified by cases’ self-reported race or ethnicity, the AI’s performance was 59%-62% for Asian, Native Hawaiian, Pacific Islander, other, and Hispanic or Latinx individuals and 67% for both Black or African American and White subgroups. For the clinicians, AI assistance–associated improvements across subgroups were in the range of 8%-12% for primary care physicians and 8%-15% for nurse practitioners. The performance spread across subgroups was 5.3% unassisted vs 6.6% assisted for primary care physicians and 5.2% unassisted vs 6.0% assisted for nurse practitioners. In both unassisted and AI-assisted modalities, and for both primary care physicians and nurse practitioners, the subgroup with the highest performance on average was Black or African American individuals, though the differences with other subgroups were small and had overlapping 95% CIs. Conclusions: AI assistance was associated with significantly improved diagnostic agreement with dermatologists. Across race and ethnicity subgroups, for both primary care physicians and nurse practitioners, the effect of AI assistance remained high at 8%-15%, and the performance spread was similar at 5%-7%. View details
    Preview abstract Importance: Most dermatologic cases are initially evaluated by nondermatologists such as primary care physicians (PCPs) or nurse practitioners (NPs). Objective: To evaluate an artificial intelligence (AI)–based tool that assists with diagnoses of dermatologic conditions. Design, Setting, and Participants: This multiple-reader, multiple-case diagnostic study developed an AI-based tool and evaluated its utility. Primary care physicians and NPs retrospectively reviewed an enriched set of cases representing 120 different skin conditions. Randomization was used to ensure each clinician reviewed each case either with or without AI assistance; each clinician alternated between batches of 50 cases in each modality. The reviews occurred from February 21 to April 28, 2020. Data were analyzed from May 26, 2020, to January 27, 2021. Exposures: An AI-based assistive tool for interpreting clinical images and associated medical history. Main Outcomes and Measures: The primary analysis evaluated agreement with reference diagnoses provided by a panel of 3 dermatologists for PCPs and NPs. Secondary analyses included diagnostic accuracy for biopsy-confirmed cases, biopsy and referral rates, review time, and diagnostic confidence. Results: Forty board-certified clinicians, including 20 PCPs (14 women [70.0%]; mean experience, 11.3 [range, 2-32] years) and 20 NPs (18 women [90.0%]; mean experience, 13.1 [range, 2-34] years) reviewed 1048 retrospective cases (672 female [64.2%]; median age, 43 [interquartile range, 30-56] years; 41 920 total reviews) from a teledermatology practice serving 11 sites and provided 0 to 5 differential diagnoses per case (mean [SD], 1.6 [0.7]). The PCPs were located across 12 states, and the NPs practiced in primary care without physician supervision across 9 states. The NPs had a mean of 13.1 (range, 2-34) years of experience and practiced in primary care without physician supervision across 9 states. Artificial intelligence assistance was significantly associated with higher agreement with reference diagnoses. For PCPs, the increase in diagnostic agreement was 10% (95% CI, 8%-11%; P < .001), from 48% to 58%; for NPs, the increase was 12% (95% CI, 10%-14%; P < .001), from 46% to 58%. In secondary analyses, agreement with biopsy-obtained diagnosis categories of maglignant, precancerous, or benign increased by 3% (95% CI, −1% to 7%) for PCPs and by 8% (95% CI, 3%-13%) for NPs. Rates of desire for biopsies decreased by 1% (95% CI, 0-3%) for PCPs and 2% (95% CI, 1%-3%) for NPs; the rate of desire for referrals decreased by 3% (95% CI, 1%-4%) for PCPs and NPs. Diagnostic agreement on cases not indicated for a dermatologist referral increased by 10% (95% CI, 8%-12%) for PCPs and 12% (95% CI, 10%-14%) for NPs, and median review time increased slightly by 5 (95% CI, 0-8) seconds for PCPs and 7 (95% CI, 5-10) seconds for NPs per case. Conclusions and Relevance: Artificial intelligence assistance was associated with improved diagnoses by PCPs and NPs for 1 in every 8 to 10 cases, indicating potential for improving the quality of dermatologic care. View details
    Iterative quality control strategies for expert medical image labeling
    Sonia Phene
    Abigail Huang
    Rebecca Ackermann
    Olga Kanzheleva
    Caitlin Taggart
    Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (2021)
    Preview abstract Data quality is a key concern for artificial intelligence (AI) efforts that rely upon crowdsourced data collection. In the domain of medicine in particular, labeled data must meet higher quality standards, or the resulting AI may lead to patient harm, and/or perpetuate biases. What are the challenges involved in expert medical labeling? What processes do such teams employ? In this study, we interviewed members of teams developing AI for medical imaging across 4 subdomains (ophthalmology, radiology, pathology, and dermatology). We identify a set of common practices for ensuring data quality. We describe one instance of low-quality labeling caught by post-launch monitoring. However, the more common pattern is to involve experts in an iterative process of defining, testing, and iterating tasks and instructions. Teams invest in these upstream efforts in order to mitigate downstream quality issues during large-scale labeling. View details