Applied science

Combining computer science with physics and biology to create breakthroughs that help the world.

aerial view of the earth

Combining computer science with physics and biology to create breakthroughs that help the world.

About the team

Computer science and natural science are complementary: breakthroughs in one can lead to remarkable advances in the other. The goal of the Applied Science organization at Google is to cross-fertilize these two fields. There are four main efforts in Applied Science: Quantum Computing, Google Accelerated Science, Climate and Energy, and Scientific Computing Tools.

Quantum Computing uses advances in applied physics to push the state-of-the-art in computation. Google Accelerated Science and Climate and Energy do the opposite: they use the latest advances in machine learning and artificial intelligence to accelerate progress in natural sciences, including societally-important areas such as biomedical research and zero-carbon energy sources. Finally, we supply Scientific Computing Tools such as Colab to many internal groups to enhance their data and machine learning productivity.

Team focus summaries

Featured publications

Exponential Quantum Speedup in Simulating Coupled Classical Oscillators
Dominic Berry
Rolando Somma
Nathan Wiebe
Physical Review X, 13 (2023), pp. 041041
Quantum Simulation of Exact Electron Dynamics can be more Efficient than Classical Mean-Field Methods
William J. Huggins
Dominic W. Berry
Shu Fay Ung
Andrew Zhao
David Reichman
Andrew Baczewski
Joonho Lee
Nature Communications, 14 (2023), pp. 4058
Longitudinal fundus imaging and its genome-wide association analysis provides evidence for a human retinal aging clock
Sara Ahadi
Kenneth A Wilson Jr,
Drew Bryant
Orion Pritchard
Ajay Kumar
Enrique M Carrera
Ricardo Lamy
Jay M Stewart
Avinash Varadarajan
Pankaj Kapahi
Ali Bashir
eLife (2023)
Estimates of broadband upwelling irradiance from GOES-16 ABI
Sixing Chen
Vincent Rudolf Meijer
Joe Ng
Geoff Davis
Carl Elkin
Remote Sensing of Environment, 285 (2023)
Noise-resilient Majorana Edge Modes on a Chain of Superconducting Qubits
Alejandro Grajales Dau
Alex Crook
Alex Opremcak
Alexa Rubinov
Alexander Korotkov
Alexandre Bourassa
Alexei Kitaev
Alexis Morvan
Andre Gregory Petukhov
Andrew Dunsworth
Andrey Klots
Anthony Megrant
Ashley Anne Huff
Benjamin Chiaro
Bernardo Meurer Costa
Bob Benjamin Buckley
Brooks Foxen
Charles Neill
Christopher Schuster
Cody Jones
Daniel Eppens
Dar Gilboa
Dave Landhuis
Dmitry Abanin
Doug Strain
Ebrahim Forati
Edward Farhi
Emily Mount
Fedor Kostritsa
Frank Carlton Arute
Guifre Vidal
Igor Aleiner
Jamie Yao
Jeremy Patterson Hilton
Joao Basso
John Mark Kreikebaum
Joonho Lee
Juan Atalaya
Juhwan Yoo
Justin Thomas Iveland
Kannan Aryaperumal Sankaragomathi
Kenny Lee
Kim Ming Lau
Kostyantyn Kechedzhi
Kunal Arya
Lara Faoro
Leon Brill
Marco Szalay
Markus Rudolf Hoffmann
Masoud Mohseni
Michael Blythe Broughton
Michael Newman
Michel Henri Devoret
Mike Shearn
Nicholas Bushnell
Orion Martin
Paul Conner
Pavel Laptev
Ping Yeh
Rajeev Acharya
Rebecca Potter
Reza Fatemi
Roberto Collins
Sergei Isakov
Shirin Montazeri
Steve Habegger
Thomas E O'Brien
Trent Huang
Trond Ikdahl Andersen
Vadim Smelyanskiy
Vladimir Shvarts
Wayne Liu
William Courtney
William Giang
William J. Huggins
Wojtek Mruczkiewicz
Xiao Mi
Yaxing Zhang
Yu Chen
Yuan Su
Zijun Chen
Science (2022) (to appear)
Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data
Fantine Huot
Lily Hu
Matthias Ihme
Yi-fan Chen
IEEE Transactions on Geoscience and Remote Sensing, 60 (2022), pp. 1-13
Comprehensive Imaging of C-2W Plasmas: Instruments and Applications
Erik Granstedt
Deepak Gupta
James Sweeney
Matthew Tobin
the TAE team
Review of Scientific Instruments, 92 (2021), pp. 043515