Robin Kothari
I am a theoretical computer scientist and my primary area of research is quantum algorithms and complexity theory.
Research Areas
Authored Publications
Sort By
Preview abstract
We present shadow Hamiltonian simulation, a framework for simulating quantum dynamics
using a compressed quantum state that we call the “shadow state”. The amplitudes of this
shadow state are proportional to the expectations of a set of operators of interest. The shadow
state evolves according to its own Schrodinger equation, and under broad conditions can be
simulated on a quantum computer. We analyze a number of applications of this framework to quantum simulation problems. This includes simulating the dynamics of exponentially large systems of free fermions, or exponentially large systems of free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. Shadow Hamiltonian simulation can be extended to simulate expectations of more complex operators such as two-time correlators or Green’s functions, and to study the evolution of operators themselves in the Heisenberg picture
View details
Preview abstract
Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error.
View details
Preview abstract
We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks.
View details
Exponential Quantum Speedup in Simulating Coupled Classical Oscillators
Dominic Berry
Rolando Somma
Nathan Wiebe
Physical Review X, 13 (2023), pp. 041041
Preview abstract
We present a quantum algorithm for simulating the classical dynamics of 2^n coupled oscillators (e.g., 2^n masses coupled by springs). Our approach leverages a mapping between the Schrodinger equation and Newton's equations for harmonic potentials such that the amplitudes of the evolved quantum state encode the momenta and displacements of the classical oscillators. When individual masses and spring constants can be efficiently queried, and when the initial state can be efficiently prepared, the complexity of our quantum algorithm is polynomial in n, almost linear in the evolution time, and sublinear in the sparsity. As an example application, we apply our quantum algorithm to efficiently estimate the kinetic energy of an oscillator at any time, for a specification of the problem that we prove is \BQP-complete. Thus, our approach solves a potentially practical application with an exponential speedup over classical computers. Finally, we show that under similar conditions our approach can efficiently simulate more general classical harmonic systems with 2^n modes.
View details