Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10483 publications
A Recipe for Improving Remote Sensing Zero Shot Generalization
Aviad Barzilai
Yotam Gigi
Vered Silverman
Yehonathan Refael
Bolous Jaber
Amr Helmy
3rd ML4RS Workshop at ICLR 2025
Preview abstract
Foundation models have had a significant impact across various AI applications, enabling applications for use cases that were previously impossible. Visual language models (VLMs), in particular, have outperformed other techniques in many tasks. In remote sensing (RS), foundation models have shown improvements across various applications. However, unlike other fields, the use of VLMs with large-scale remote sensing image-text datasets remains limited.
In this work, we first introduce two novel image-caption datasets for training of remote sensing foundation models. The first dataset pairs aerial and satellite imagery, aligned with Google-Maps data, with high-quality captions generated using Gemini. The second utilizes public web images and their corresponding alt-text, filtered for only remote sensing domain, resulting in a highly diverse dataset.
We show that using these datasets to pre-train the Mammut [], a VLM architecture, results in state-of-the-art generalization performance in a zero-shot classification and cross-modal retrieval on well-known public benchmarks. Secondly, we leverage this newly pre-trained VLM to generate inference attention maps for a novel class query (i.e., a class unseen during training). We subsequently propose an iterative self-supervised fine-tuning approach where samples aligned with these attention maps are iteratively pseudo-labeled and utilized for model training.
View details
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Vincent Rudolf Meijer
Rémi Chevallier
Allie Duncan
Kyle McConnaughay
Atmospheric Measurement Techniques, 18 (2025), pp. 3495-3532
Preview abstract
Condensation trail (contrail) cirrus clouds cause a substantial fraction of aviation's climate impact. One proposed method for the mitigation of this impact involves modifying flight paths to avoid particular regions of the atmosphere that are conducive to the formation of persistent contrails, which can transform into contrail cirrus. Determining the success of such avoidance maneuvers can be achieved by ascertaining which flight formed each nearby contrail observed in satellite imagery. The same process can be used to assess the skill of contrail forecast models. The problem of contrail-to-flight attribution is complicated by several factors, such as the time required for a contrail to become visible in satellite imagery, high air traffic densities, and errors in wind data. Recent work has introduced automated algorithms for solving the attribution problem, but it lacks an evaluation against ground-truth data. In this work, we present a method for producing synthetic contrail detections with predetermined contrail-to-flight attributions that can be used to evaluate – or “benchmark” – and improve such attribution algorithms. The resulting performance metrics can be employed to understand the implications of using these observational data in downstream tasks, such as forecast model evaluation and the analysis of contrail avoidance trials, although the metrics do not directly quantify real-world performance. We also introduce a novel, highly scalable contrail-to-flight attribution algorithm that leverages the characteristic compounding of error induced by simulating contrail advection using numerical weather models. The benchmark shows an improvement of approximately 25 % in precision versus previous contrail-to-flight attribution algorithms, without compromising recall.
View details
Reasoning-SQL: Reinforcement Learning with Partial Rewards for Reasoning-Enhanced Text-to-SQL
Mohammadreza Pourreza
Shayan Talaei
Hailong Li
Azalia Mirhoseini
Amin Saberi
Conference on Language Modeling (COLM) (2025) (to appear)
Preview abstract
Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.
View details
Preview abstract
Google has a long tradition of open-source software, which encompasses the field of operations research with OR-Tools. In development since 2008, it offers several solvers useful to many OR practitioners:
- PDLP, a revolutionary first-order linear solver that is reshaping the landscape of linear optimisation;
- CP-SAT, an award-winning constraint-programming solver;
- Glop, an accurate linear solver;
- Routing, a vehicle routing solver underpinning Google Maps Platform Route Optimization.
OR-Tools has long had its features accessible from other languages: the core algorithms are implemented in C++ for performance, but users can tap into them in Python, Java, C#, or Go.
It is recently available in Julia too, with a current focus on the linear and constraint solvers, either locally or remotely.
We provide a wrapper for our solvers that brings them to JuMP.jl through MathOptInterface.jl.
This tutorial will walk you through the features of OR-Tools and its solvers, then show examples of using OR-Tools from within Julia, either through JuMP or a lower-level interface.
We will also share our experience of C++-Julia interop.
View details
Preview abstract
The global adoption of Large Language Models (LLMs) in healthcare shows promise for enhancing clinical workflows and improving patient outcomes. However, Automatic Speech
Recognition (ASR) errors in critical medical entities remain a significant challenge. These
errors can lead to severe consequences if undetected. This study investigates the prevalence and impact of ASR errors in medical transcription across Africa, Europe, and North America. By examining variations in accented English across three continents, we analyze the impact of regional speech patterns on ASR performance. Our research quantifies both the potential and limitations of LLMs in mitigating ASR inaccuracies within various medical settings, with particular attention to performance variations across regional accents and medical terminology. Our findings highlight significant disparities in ASR accuracy across regions and identify specific conditions under which LLM corrections prove most effective.
View details
Preview abstract
This paper discusses the migration of data orchestration workflows from a legacy tool like Autosys to a modern, cloud - based solution, Google Cloud Composer. It explores the transition from traditional job scheduling to Directed Acyclic Graph (DAG) - based workflows using Apache Airflow, culminating in the deployment and management of these workflows in Cloud Composer. The benefits and challenges of this migration are examined, highlighting the advantages of scalability, flexibility, and cloud integration offered by Cloud Composer.
View details
Differentiable Approximations for Distance Queries
David M. Mount
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
Preview abstract
The widespread use of gradient-based optimization has motivated the adaptation of various classical algorithms into differentiable solvers compatible with learning pipelines. In this paper, we investigate the enhancement of traditional geometric query problems such that the result consists of both the geometric function as well as its gradient. Specifically, we study the fundamental problem of distance queries against a set of points P in R^d, which also underlies various similarity measures for learning algorithms.
The main result of this paper is a multiplicative (1+epsilon)-approximation of the Euclidean distance to P which is differentiable at all points in R^d \ P with asymptotically optimal bounds on the norms of its gradient and Hessian, from a data structure with storage and query time matching state-of-the-art results for approximate nearest-neighbor searching. The approximation is realized as a regularized distance through a partition-of-unity framework, which efficiently blends multiple local approximations, over a suitably defined covering of space, into a smooth global approximation. In order to obtain the local distance approximations in a manner that facilitates blending, we develop a new approximate Voronoi diagram based on a simple point-location data structure, simplifying away both the lifting transformation and ray shooting.
View details
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Hailey Joren
Jianyi Zhang
Chun-Sung Ferng
Ankur Taly
International Conference on Learning Representations (ICLR) (2025)
Preview abstract
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a method to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that larger models with higher baseline performance (Gemini 1.5 Pro, GPT 4o, Claude 3.5) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, smaller models with lower baseline performance (Llama 3.1, Mistral 3, Gemma 2) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma.
View details
From Few to Many: Self-Improving Many-Shot Reasoners Through Iterative Optimization and Generation
Han Zhou
Hootan Nakhost
Ke Jiang
International Conference on Learning Representations (ICLR) (2025)
Preview abstract
Recent advances in long-context large language models (LLMs) have led to the emerging paradigm of many-shot in-context learning (ICL), where it is observed that scaling many more demonstrating examples beyond the conventional few-shot setup in the context can lead to performance benefits. However, despite its promise, it is unclear what aspects dominate the benefits and whether simply scaling to more examples is the most effective way of improving many-shot ICL. In this work, we first provide an analysis of the factors driving many-shot ICL, and we find that 1) many-shot performance can still be attributed to often a few disproportionately influential examples and 2) identifying such influential examples ("optimize") and using them as demonstrations to regenerate new examples ("generate") can lead to further improvements. Inspired by the findings, we propose BRIDGE, an algorithm that alternates between the optimize step with Bayesian optimization to discover the influential sets of examples and the generate step to reuse this set to expand the reasoning paths of the examples back to the many-shot regime automatically. On Gemini, Claude, and Mistral LLMs of different sizes, we show that BRIDGE to significant improvements across a diverse set of tasks, including symbolic reasoning, numerical reasoning, and code generation.
View details
Deep Multi-modal Species Occupancy Modeling
Timm Haucke
Yunyi Shen
Levente Klein
David Rolnick
Lauren Gillespie
Sara Beery
bioRxiv (2025)
Preview abstract
Occupancy models are tools for modeling the relationship between habitat and species occurrence while accounting for the fact that species may still be present even if not detected. The types of environmental variables typically used for characterizing habitats in such ecological models, such as precipitation or tree cover, are frequently of low spatial resolution, with a single value for a spatial pixel size of, e.g., 1km2. This spatial scale fails to capture the nuances of micro-habitat conditions that can strongly influence species presence, and additionally, as many of these are derived from satellite data, there are aspects of the environment they cannot capture, such as the structure of vegetation below the forest canopy. We propose to combine high-resolution satellite and ground-level imagery to produce multi-modal environmental features that better capture micro-habitat conditions, and incorporate these multi-modal features into hierarchical Bayesian species occupancy models. We leverage pre-trained deep learning models to flexibly capture relevant information directly from raw imagery, in contrast to traditional approaches which rely on derived and/or hand-crafted sets of ecosystem covariates. We implement deep multi-modal species occupancy modeling using a new open-source Python package for ecological modeling, designed for bridging machine learning and statistical ecology. We test our method under a strict evaluation protocol on 16 mammal species across thousands of camera traps in Snapshot USA surveys, and find that multi-modal features substantially enhance predictive power compared to traditional environmental variables alone. Our results not only highlight the predictive value and complementarity of in-situ samples, but also make the case for more closely integrating deep learning models and traditional statistical ecological models.
View details
GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning
Sahiti Yerramilli
Nilay Pande
Rynaa Grover
Jayant Tamarapalli
(2025)
Preview abstract
This paper introduces GeoChain, a large-scale benchmark for evaluating step-by-step geographic reasoning in multimodal large language models (MLLMs). Leveraging 1.46 million Mapillary street-level images, GeoChain pairs each image with a 21-step chain-of-thought (CoT) question sequence (over 30 million Q&A pairs). These sequences guide models from coarse attributes to fine-grained localization across four reasoning categories - visual, spatial, cultural, and precise geolocation - annotated by difficulty. Images are also enriched with semantic segmentation (150 classes) and a visual locatability score. Our benchmarking of contemporary MLLMs (GPT-4.1 variants, Claude 3.7, Gemini 2.5 variants) on a diverse 2,088-image subset reveals consistent challenges: models frequently exhibit weaknesses in visual grounding, display erratic reasoning, and struggle to achieve accurate localization, especially as the reasoning complexity escalates. GeoChain offers a robust diagnostic methodology, critical for fostering significant advancements in complex geographic reasoning within MLLMs.
View details
A Strategic Framework for AI Product Development and Evaluation in Enterprise Software
International Journal of Computer Engineering and Technology (IJCET), Volume 16, Issue 1 (2025)
Preview abstract
This article presents a comprehensive framework for developing and evaluating AI products in enterprise software systems, addressing the critical challenges organizations face during AI transformation initiatives. The article introduces a structured approach to decision-making for AI integration, encompassing ROI evaluation, user value assessment, and business impact analysis. It establishes distinct methodologies for both assistive and autonomous AI systems, providing detailed metrics for measuring success and performance across different implementation scenarios. Across various industries, the framework has shown potential in reducing implementation time, increasing user adoption rates, and enhancing overall project success rates, highlighting its practical applicability. The article methodology combines theoretical analysis with practical case studies, resulting in a flexible yet robust framework that can adapt to various organizational contexts. The framework's primary contribution lies in its practical approach to bridging the gap between theoretical AI capabilities and real-world implementation challenges, offering product leaders a systematic methodology for AI product development and evaluation. By addressing both current implementation challenges and future scalability requirements, this framework provides organizations with a foundational tool for navigating their AI transformation journey while maintaining a focus on measurable business outcomes and user value creation.
View details
Score-based Causal Representation Learning: Linear and General Transformations
Abhishek Kumar
Emre Acarturk
Ali Tajer
Burak Varici
Journal of Machine Learning Research (JMLR) 2025 (2025)
Preview abstract
This paper addresses intervention-based causal representation learning (CRL) under a general
nonparametric latent causal model and an unknown transformation that maps the latent variables to the observed variables. Linear and general transformations are investigated. The paper addresses both the identifiability and achievability aspects. Identifiability refers to determining algorithm-agnostic conditions that ensure recovering the true latent causal variables and the latent causal graph underlying them. Achievability refers to the algorithmic aspects and addresses designing algorithms that achieve identifiability guarantees. By drawing novel connections between score functions (i.e., the gradients of the logarithm of density functions) and CRL, this paper designs a score-based class of algorithms that ensures both identifiability and achievability. First, the paper focuses on linear transformations and shows that one stochastic hard intervention per node suffices to guarantee identifiability. It also provides partial identifiability guarantees for soft interventions, including identifiability up to ancestors for general causal models and perfect latent graph recovery for sufficiently non-linear causal models. Secondly, it focuses on general transformations and shows that two stochastic hard interventions per node suffice for identifiability. Notably, one does not need to know which pair of interventional environments have the same node intervened.
View details
User-Centered Delivery of AI-Powered Health Care Technologies in Clinical Settings: Mixed Methods Case Study
Randall Brandt
Hien Brown
Christine Silva
JMIR Human Factors (2025)
Preview abstract
Background:
Providers spend a large percentage of their day using electronic health record (EHR) technology and frequently report frustration when EHR tasks are time-consuming and effortful. To solve these challenges, artificial intelligence (AI)–based enhancements to EHR technology are increasingly being deployed. However, AI-based implementations for EHR features often lack user-centered evaluation.
Objective:
This study evaluates, using a user-centered approach, the implementation of an AI-powered search and clinical discovery tool within an EHR system.
Methods:
We conducted a mixed methods study consisting of interviews, observations, and surveys for 5 months.
Results:
High adoption rates for the AI-based features (163/176, 93% users after 3 months) and significant increases across key metrics, including user satisfaction (U=49; P<.001) and perception of time saved (U=49; P<.001), demonstrated that the AI-based features were not only successfully integrated into various clinical workflows but also improved the user experience for clinicians.
Conclusions:
Our results underscore the feasibility and effectiveness of using a user-centered approach for the deployment of clinical AI tools. High adoption rates and positive user experiences were driven by our user-centered research program, which emphasized close collaboration with users, rapid incorporation of feedback, and tailored user training. This study program can be used as a starting framework for the design and integration of human-centered research methods for AI tool deployment in clinical settings.
View details
Permission Rationales in the Web Ecosystem: An Exploration of Rationale Text and Design Patterns
Yusra Elbitar
Soheil Khodayari
Marian Harbach
Gianluca De Stefano
Balazs Engedy
Giancarlo Pellegrino
Sven Bugiel
CHI 2025, ACM
Preview abstract
Modern web applications rely on features like camera and geolocation for personalized experiences, requiring user permission via browser prompts. To explain these requests, applications provide rationales—contextual information on why permissions are needed. Despite their importance, little is known about how rationales appear on the web or their influence on user decisions.
This paper presents the first large-scale study of how the web ecosystem handles permission rationales, covering three areas: (i) identifying webpages that use permissions, (ii) detecting and classifying permission rationales, and (iii) analyzing their attributes to understand their impact on user decisions. We examined over 770K webpages from Chrome telemetry, finding 3.6K unique rationale texts and 749 rationale UIs across 85K pages. We extracted key rationale attributes and assessed their effect on user behavior by cross-referencing them with Chrome telemetry data. Our findings reveal nine key insights, providing the first evidence of how different rationales affect user decisions.
View details