Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10193 publications
    Preview abstract Storage on Android has evolved significantly over the years, with each new Android version introducing changes aimed at enhancing usability, security, and privacy. While these updates typically help with restricting app access to storage through various mechanisms, they may occasionally introduce new complexities and vulnerabilities. A prime example is the introduction of scoped storage in Android 10, which fundamentally changed how apps interact with files. While intended to enhance user privacy by limiting broad access to shared storage, scoped storage has also presented developers with new challenges and potential vulnerabilities to address. However, despite its significance for user privacy and app functionality, no systematic studies have been performed to study Android’s scoped storage at depth from a security perspective. In this paper, we present the first systematic security analysis of the scoped storage mechanism. To this end, we design and implement a testing tool, named ScopeVerif, that relies on differential analysis to uncover security issues and implementation inconsistencies in Android’s storage. Specifically, ScopeVerif takes a list of security properties and checks if there are any file operations that violate any security properties defined in the official Android documentation. Additionally, we conduct a comprehensive analysis across different Android versions as well as a cross-OEM analysis to identify discrepancies in different implementations and their security implications. Our study identifies both known and unknown issues of scoped storage. Our cross-version analysis highlights undocumented changes as well as partially fixed security loopholes across versions. Additionally, we discovered several vulnerabilities in scoped storage implementations by different OEMs. These vulnerabilities stem from deviations from the documented and correct behavior, which potentially poses security risks. The affected OEMs and Google have acknowledged our findings and offered us bug bounties in response. View details
    Preview abstract We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods. Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City. View details
    Preview abstract Today’s smartphone interactions are typically designed with one primary preset, accompanied by customization settings that can be manually adjusted. To promote the creation of contextually aware experiences, researchers have highlighted the factors that influence mobile device usage in the ability-based design framework. This paper expands upon existing frameworks and contributes to an empirical understanding of smartphone accessibility. Through a 10-day longitudinal diary study and video interview with 24 individuals who do and do not identify as having a disability, the research also illustrates the reactions of reattempt, adaptation, and avoidance, which were used in response to a lack of smartphone accessibility. Despite experiencing scenarios where accessibility settings could be leveraged, 20 out of 24 participants did not use accessibility settings on their smartphone. A total of 12 out of 24 participants tried accessibility settings on their smartphones, however identifying accessibility was not for them. This work highlights the need to shift current design practices to better serve the accessibility community. View details
    PreFix: Optimizing the Performance of Heap-Intensive Applications
    Chaitanya Mamatha Ananda
    Rajiv Gupta
    Han Shen
    CGO 2025: International Symposium on Code Generation and Optimization, Las Vegas, NV, USA (to appear)
    Preview abstract Analyses of heap-intensive applications show that a small fraction of heap objects account for the majority of heap accesses and data cache misses. Prior works like HDS and HALO have shown that allocating hot objects in separate memory regions can improve spatial locality leading to better application performance. However, these techniques are constrained in two primary ways, limiting their gains. First, these techniques have Imperfect Separation, polluting the hot memory region with several cold objects. Second, reordering of objects across allocations is not possible as the original object allocation order is preserved. This paper presents a novel technique that achieves near perfect separation of hot objects via a new context mechanism that efficiently identifies hot objects with high precision. This technique, named PreFix, is based upon Preallocating memory for a Fixed small number of hot objects. The program, guided by profiles, is instrumented to compute context information derived from dynamic object identifiers, that precisely identifies hot object allocations that are then placed at predetermined locations in the preallocated memory. The preallocated memory region for hot objects provides the flexibility to reorder objects across allocations and allows colocation of objects that are part of a hot data stream (HDS), improving spatial locality. The runtime overhead of identifying hot objects is not significant as this optimization is only focused on a small number of static hot allocation sites and dynamic hot objects. While there is an increase in the program’s memory foot-print, it is manageable and can be controlled by limiting the size of the preallocated memory. In addition, PreFix incorporates an object recycling optimization that reuses the same preallocated space to store different objects whose lifetimes are not expected to overlap. Our experiments with 13 heap-intensive applications yields reductions in execution times ranging from 2.77% to 74%. On average PreFix reduces execution time by 21.7% compared to 7.3% by HDS and 14% by HALO. This is due to PreFix’s precision in hot object identification, hot object colocation, and low runtime overhead. View details
    A Reduction from Multi-Parameter to Single-Parameter Bayesian Contract Design
    Matteo Castiglioni
    Junjie Chen
    Minming Li
    Haifeng Xu
    SODA 2025 (to appear)
    Preview abstract The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally productive. The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter. As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case. View details
    Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
    Marc Stogaitis
    Tajinder Gadh
    Richard Allen
    Alexei Barski
    Robert Bosch
    Patrick Robertson
    Youngmin Cho
    Nivetha Thiruverahan
    Aman Raj
    Geophysical Journal International (2025), ggae436
    Preview abstract This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation. View details
    Databases in the Era of Memory-Centric Computing
    Anastasia Ailamaki
    Lawrence Benson
    Helena Caminal
    Jana Gičeva
    Eric Seldar
    Lisa Wu Wills
    Preview abstract The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud. View details
    Preview abstract Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma. View details
    Preview abstract Misgendering refers to the act of incorrectly identifying or addressing someone's gender. While misgendering is both a factual inaccuracy and a toxic act of identity erasure, research on fact-checking and toxicity detection does not address it. We are the first to bridge this gap by introducing a dataset, \dataset, to assist in developing interventions for misgendering. The misgendering interventions task can be divided into two sub-tasks: (i) detecting misgendering, followed by (ii) editing misgendering where misgendering is present, in domains where editing is appropriate. We introduce a dataset containing a total of 3806 instances of tweets, YouTube comments, and LLM-generated text about 30 non-cisgender individuals annotated for whether they contain misgendering or not. LLM-generated text is also annotated for edits required to fix misgendering. Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlight challenges for future models to address. Additionally, we conducted a survey of non-cisgender individuals in the US to understand opinions about automated interventions for text-based misgendering. We find interest for interventions along with concerns for potential harm. View details
    Preview abstract Zero-shot text rankers powered by recent LLMs achieve remarkable ranking performance by simply prompting. Existing prompts for pointwise LLM rankers mostly ask the model to choose from binary relevance labels like "Yes" and "No". However, the lack of intermediate relevance label options may cause the LLM to provide noisy or biased answers for documents that are partially relevant to the query. We propose to incorporate fine-grained relevance labels into the prompt for LLM rankers, enabling them to better differentiate among documents with different levels of relevance to the query and thus derive a more accurate ranking. We study two variants of the prompt template, coupled with different numbers of relevance levels. Our experiments on 8 BEIR data sets show that adding fine-grained relevance labels significantly improves the performance of LLM rankers. View details
    Towards a Complete Benchmark on Video Moment Localization
    Jinyeong Chae
    Donghwa Kim
    Kwanseok Kim
    Doyeon Lee
    Sangho Lee
    Seongsu Ha
    Jonghwan Mun
    Wooyoung Kang
    Byungseok Roh
    (2024)
    Preview abstract In this paper, we propose and conduct a comprehensive benchmark on moment localization task, which aims to retrieve a segment that corresponds to a text query from a single untrimmed video. Our study starts from an observation that most moment localization papers report experimental results only on a few datasets in spite of availability of far more benchmarks. Thus, we conduct an extensive benchmark study to measure the performance of representative methods on widely used 7 datasets. Looking further into the details, we pose additional research questions and empirically verify them, including if they rely on unintended biases introduced by specific training data, if advanced visual features trained on classification task transfer well to this task, and if computational cost of each model pays off. With a series of these experiments, we provide multifaceted evaluation of state-of-the-art moment localization models. Codes are available at https://github.com/snuviplab/MoLEF. View details
    Preview abstract Millions of people turn to Google Search each day for information on things as diverse as new cars or flu symptoms. The terms that they enter contain valuable information on their daily intent and activities, but the information in these search terms has been difficult to fully leverage. User-defined categorical filters have been the most common way to shrink the dimensionality of search data to a tractable size for analysis and modeling. In this paper we present a new approach to reducing the dimensionality of search data while retaining much of the information in the individual terms without user-defined rules. Our contributions are two-fold: 1) we introduce SLaM Compression, a way to quantify search terms using pre-trained language models and create a representation of search data that has low dimensionality, is memory efficient, and effectively acts as a summary of search, and 2) we present CoSMo, a Constrained Search Model for estimating real world events using only search data. We demonstrate the efficacy of our contributions by estimating with high accuracy U.S. automobile sales and U.S. flu rates using only Google Search data. View details
    Bayesian Calibrated Click-Through Auctions
    Junjie Chen
    Minming Li
    Haifeng Xu
    51st International Colloquium on Automata, Languages, and Programming (ICALP 2024), Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik, 44:1-44:18
    Preview abstract We study information design in click-through auctions, in which the bidders/advertisers bid for winning an opportunity to show their ads but only pay for realized clicks. The payment may or may not happen, and its probability is called the click-through rate (CTR). This auction format is widely used in the industry of online advertising. Bidders have private values, whereas the seller has private information about each bidder's CTRs. We are interested in the seller's problem of partially revealing CTR information to maximize revenue. Information design in click-through auctions turns out to be intriguingly different from almost all previous studies in this space since any revealed information about CTRs will never affect bidders' bidding behaviors -- they will always bid their true value per click -- but only affect the auction's allocation and payment rule. In some sense, this makes information design effectively a constrained mechanism design problem. Our first result is an FPTAS to compute an approximately optimal mechanism under a constant number of bidders. The design of this algorithm leverages Bayesian bidder values which help to "smooth" the seller's revenue function and lead to better tractability. The design of this FPTAS is complex and primarily algorithmic. Our second main result pursues the design of "simple" mechanisms that are approximately optimal yet more practical. We primarily focus on the two-bidder situation, which is already notoriously challenging as demonstrated in recent works. When bidders' CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose construction relies on a parameter termed optimal signal ratio. The constructed scheme provably obtains a good approximation as long as the maximum and minimum of bidders' value density functions do not differ much. View details
    Preview abstract Welcome to the 16th edition of this column on recent books and journal articles in the field of public opinion, survey methods, survey statistics, Big Data, data science, and user experience research. Special issues of journals have a space in this article because, in our view, they are like edited books. We also added review papers from the journal series of Annual Reviews because these papers are seminal state of the art write ups, a mini book, if you wish on a specific subject. This article is an update of the books and journals published in the 2022 article. Like the previous year, the books are organized by topic; this should help the readers to focus on their interests. You will note that we use very broad definitions of public opinion, survey methods, survey statistics, Big Data, data science, and user experience research. This is because there are many books published in different outlets that can be very useful to the readers of Survey Practice, even if they do not come from traditional sources of survey content. It is unlikely we have exhaustively listed all new books in each subcategory; we did our best scouting different resources and websites, but we take full responsibility for any omissions. The list is also focused only on books published in the English language and available for purchase (as an ebook or in print) at the time of this review (April 2024) and with the printed copyright year of 2023. Books are listed based on the relevance to the topic, and no judgment is made in terms of quality of the content. We let the readers do so. If you want to send information for the next issue, please send it to surveypractice.new.books@gmail.com. View details
    Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs
    Charly Castes
    29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4 (ASPLOS '24) (2024)
    Preview abstract Confidential VMs on platforms such as Intel TDX, AMD SEV and Arm CCA promise greater security for cloud users against even a hypervisor-level attacker, but this promise has been shattered by repeated transient-execution vulnerabilities and CPU bugs. At the root of this problem lies the need to multiplex CPU cores with all their complex microarchitectural state among distrusting entities, with an untrusted hypervisor in control of the multiplexing. We propose core-gapped confidential VMs, a set of software-only modifications that ensure that no distrusting code shares a core, thus removing all same-core side-channels and transient-execution vulnerabilities from the guest’s TCB. We present an Arm-based prototype along with a performance evaluation showing that, not only does core-gapping offer performance competitive with non-confidential VMs, the greater locality achieved by avoiding shared cores can even improve performance for CPU-intensive workloads. View details