Alexander D'Amour

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components—GPPEs—from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended. View details
    Preview abstract Diagnosing and mitigating changes in model fairness under distribution shift is an important component of the safe deployment of machine learning in healthcare settings. Importantly, the success of any mitigation strategy strongly depends on the structure of the shift. Despite this, there has been little discussion of how to empirically assess the structure of a distribution shift that one is encountering in practice. In this work, we adopt a causal framing to motivate conditional independence tests as a key tool for characterizing distribution shifts. Using our approach in two medical applications, we show that this knowledge can help diagnose failures of fairness transfer, including cases where real-world shifts are more complex than is often assumed in the literature. Based on these results, we discuss potential remedies at each step of the machine learning pipeline. View details
    Preview abstract Experiments with pretrained models such as BERT are often based on a single checkpoint. While the conclusions drawn apply to the artifact (i.e., the particular instance of the model), it is not always clear whether they hold for the more general procedure (which includes the model architecture, training data, initialization scheme, and loss function). Recent work has shown that re-running pretraining can lead to substantially different conclusions about performance, suggesting that alternative evaluations are needed to make principled statements about procedures. To address this question, we introduce MultiBERTs: a set of 25 BERT-base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random initialization and data shuffling. The aim is to enable researchers to draw robust and statistically justified conclusions about pretraining procedures. The full release includes 25 fully trained checkpoints, as well as statistical guidelines and a code library implementing our recommended hypothesis testing methods. Finally, for five of these models we release a set of 28 intermediate checkpoints in order to support research on learning dynamics. View details
    On Robustness and Transferability of Convolutional Neural Networks
    Josip Djolonga
    Jessica Yung
    Michael Tschannen
    Rob Romijnders
    Lucas Beyer
    Alexander Kolesnikov
    Dan Moldovan
    Sylvain Gelly
    Neil Houlsby
    Xiaohua Zhai
    Conference on Computer Vision and Pattern Recognition (2021)
    Preview abstract Modern deep convolutional networks (CNNs) are often criticized for their failure to generalize under distributional shifts. However, several recent breakthroughs in transfer learning suggest that these networks can cope with severe distribution shifts and successfully adapt to new tasks from a few training examples. In this work we revisit the out-of-distribution and transfer performance of modern image classification CNNs and investigate the impact of the pre-training data scale, the model scale, and the data preprocessing pipeline. We find that increasing both the training set and model sizes significantly improve the robustness to distribution shifts. Furthermore, we show that, perhaps surprisingly, simple changes in the preprocessing such as modifying the image resolution can significantly mitigate robustness issues in some cases. Finally, we outline the shortcomings of existing robustness evaluation datasets and introduce a synthetic dataset for fine-grained robustness analysis. View details
    Preview abstract Logistic regression remains one of the most widely used tools in applied statistics, machine learning and data science. Practical datasets often have a substantial number of features $d$ relative to the sample size $n$. In these cases, the logistic regression maximum likelihood estimator (MLE) is biased, and its standard large-sample approximation is poor. In this paper, we develop an improved method for debiasing predictions and estimating frequentist uncertainty for such datasets. We build on recent work characterizing the asymptotic statistical behavior of the MLE in the regime where the aspect ratio $d / n$, instead of the number of features $d$, remains fixed as $n$ grows. In principle, this approximation facilitates bias and uncertainty corrections, but in practice, these corrections require an estimate of the signal strength of the predictors. Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude. The bias correction that this facilitates also reduces the variance of the predictions, yielding narrower confidence intervals with higher (valid) coverage of the true underlying probabilities and parameters. View details
    Preview abstract In order to prepare for and control the continued spread of the COVID-19 pandemic while minimizing its economic impact, the world needs to be able to estimate and predict COVID-19’s spread. Unfortunately, we cannot directly observe the prevalence or growth rate of COVID-19; these must be inferred using some kind of model. We propose a hierarchical Bayesian extension to the classic susceptible-exposed-infected-removed (SEIR) compartmental model that adds compartments to account for isolation and death and allows the infection rate to vary as a function of both mobility data collected from mobile phones and a latent time-varying factor that accounts for changes in behavior not captured by mobility data. Since confirmed-case data is unreliable, we infer the model’s parameters conditioned on deaths data. We replace the exponential-waiting-time assumption of classic compartmental models with Erlang distributions, which allows for a more realistic model of the long lag between exposure and death. The mobility data gives us a leading indicator that can quickly detect changes in the pandemic’s local growth rate and forecast changes in death rates weeks ahead of time. This is an analysis of observational data, so any causal interpretations of the model's inferences should be treated as suggestive at best; nonetheless, the model’s inferred relationship between different kinds of trips and the infection rate do suggest some possible hypotheses about what kinds of activities might contribute most to COVID-19’s spread. View details
    Underspecification Presents Challenges for Credibility in Modern Machine Learning
    Dan Moldovan
    Ben Adlam
    Babak Alipanahi
    Alex Beutel
    Christina Chen
    Jon Deaton
    Matthew D. Hoffman
    Shaobo Hou
    Neil Houlsby
    Ghassen Jerfel
    Yian Ma
    Diana Mincu
    Akinori Mitani
    Andrea Montanari
    Christopher Nielsen
    Thomas Osborne
    Rajiv Raman
    Kim Ramasamy
    Martin Gamunu Seneviratne
    Shannon Sequeira
    Harini Suresh
    Victor Veitch
    Steve Yadlowsky
    Xiaohua Zhai
    Journal of Machine Learning Research (2020)
    Preview abstract ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain. Underspecification is common in modern ML pipelines, such as those based on deep learning. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We show that this problem appears in a wide variety of practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain. View details
    Preview abstract Unobserved confounding is a central barrier to drawing causal inferences from observational data. Several authors have recently proposed that this barrier can be overcome in the case where one attempts to infer the effects of several variables simultaneously. In this paper, we present two simple, analytical counterexamples that challenge the general claims that are central to these approaches. In addition, we show that nonparametric identification is impossible in this setting. We discuss practical implications, and suggest alternatives to the methods that have been proposed so far in this line or work: using proxy variables and shifting focus to sensitivity analysis. View details
    Flexible sensitivity analysis for observational studies without observable implications
    Alexander Franks
    Avi Feller
    Journal of the American Statistical Association (2019) (to appear)
    Preview abstract A fundamental challenge in observational causal inference is that assumptions about unconfoundedness are not testable from data. Assessing sensitivity to such assumptions is therefore important in practice. Unfortunately, some existing sensitivity analysis approaches inadvertently impose restrictions that are at odds with modern causal inference methods, which emphasize flexible models for observed data. To address this issue, we propose a framework that allows (1) flexible models for the observed data and (2) clean separation of the identified and unidentified parts of the sensitivity model. Our framework extends an approach from the missing data literature, known as Tukey's factorization, to the causal inference setting. Under this factorization, we can represent the distributions of unobserved potential outcomes in terms of unidentified selection functions that posit an unidentified relationship between the treatment assignment indicator and the observed potential outcomes. The sensitivity parameters in this framework are easily interpreted, and we provide heuristics for calibrating these parameters against observable quantities. We demonstrate the flexibility of this approach in two examples, where we estimate both average treatment effects and quantile treatment effects using Bayesian nonparametric models for the observed data. View details
    BriarPatches: Pixel-Space Interventions for Inducing Demographic Parity
    Yoni Halpern
    Neural Information Processing Systems: Workshop on Ethical, Social and Governance Issues in AI (2018)
    Preview abstract We introduce the BriarPatch, a pixel-space intervention that obscures sensitive attributes from representations encoded in pre-trained classifiers. The patches encourage internal model representations not to encode sensitive information, which has the effect of pushing downstream predictors towards exhibiting demographic parity with respect to the sensitive information. The net result is that these BriarPatches provide an intervention mechanism available at user level, and complements prior research on fair representations that were previously only applicable by model developers and ML experts. View details