Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10464 publications
PageFlex: Flexible and Efficient User-space Delegation of Linux Paging Policies with eBPF
Kan Wu
Zhiyuan Guo
Suli Yang
Rajath Shashidhara
Wei Xu
Alex Snoeren
Kim Keeton
2025
Preview abstract
To increase platform memory efficiency, hyperscalers like Google and Meta transparently demote “cold” application data to cheaper cost-per-byte memory tiers like compressed memory and NVMe SSDs. These systems rely on standard kernel paging policies and mechanisms to maximize the achievable memory savings without hurting application performance. Although the literature promises better policies, implementing and deploying them within the Linux kernel
is challenging. Delegating policies and mechanisms to user space, through userfaultfd or library-based approaches, incurs overheads and may require modifying application code. We present PageFlex, a framework for delegating Linux paging policies to user space with minimal overhead and full compatibility with existing real-world deployments. PageFlex uses eBPF to delegate policy decisions while providing low-overhead access to in-kernel memory state and access information, thus balancing flexibility and performance. Additionally, PageFlex supports different paging strategies for distinct memory regions and application phases. We show that
PageFlex can delegate existing kernel-based policies with little (< 1%) application slowdown, effectively realizing the benefits of state-of-the-art policies like Hyperbolic caching and Leap prefetching, and unlocking application-specific benefits through region- and phase-aware policy specialization.
View details
Preview abstract
We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods.
Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City.
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Marc Stogaitis
Tajinder Gadh
Richard Allen
Alexei Barski
Robert Bosch
Patrick Robertson
Youngmin Cho
Nivetha Thiruverahan
Aman Raj
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Preview abstract
Several systems rely on traceroute to track a large number of Internet paths as they change over time. Monitoring systems perform this task by remapping paths periodically or whenever a change is detected. This paper shows that such complete remapping is inefficient, because most path changes are localized to a few hops of a path. We develop RemapRoute, a tool to remap a path locally given the previously known path and a change point. RemapRoute sends targeted probes to locate and remap the often few hops that have changed. Our evaluation with trace-driven simulations and in a real deployment shows that local remapping reduces the average number of probes issued during remapping by 63% and 79%, respectively, when compared with complete remapping. At the same time, our results show that local remapping has little impact on the accuracy of inferred paths.
View details
Fast ACS: Low-Latency File-Based Ordered Message Delivery at Scale
Anil Raghunath Iyer
Neel Bagora
Chang Yu
Olivier Pomerleau
Vivek Kumar
Prunthaban Kanthakumar
Usenix Annual Technical Conference (2025)
Preview abstract
Low-latency message delivery is crucial for real-time systems. Data originating from a producer must be delivered to consumers, potentially distributed in clusters across metropolitan and continental boundaries. With the growing scale of computing, there can be several thousand consumers of the data. Such systems require a robust messaging system capable of transmitting messages containing data across clusters and efficiently delivering them to consumers. The system must offer guarantees like ordering and at-least-once delivery while avoiding overload on consumers, allowing them to consume messages at their own pace.
This paper presents the design of Fast ACS (an abbreviation for Ads Copy Service), a file-based ordered message delivery system that leverages a combination of two-sided (inter-cluster) and one-sided (intra-cluster) communication primitives—namely, Remote Procedure Call and Remote Direct Memory Access, respectively—to deliver messages. The system has been successfully deployed to dozens of production clusters and scales to accommodate several thousand consumers within each cluster, which amounts to Tbps-scale intra-cluster consumer traffic at peak. Notably, Fast ACS delivers messages to consumers across the globe within a few seconds or even sub-seconds (p99) based on the message volume and consumer scale, at a low resource cost.
View details
Preview abstract
Many AI applications of interest require specialized multi-modal models. Yet, relevant data for training these models is inherently scarce. Human annotation is prohibitively expensive, error-prone, and time-consuming. Meanwhile, existing synthetic data generation methods often rely on manual prompts, evolutionary algorithms, or extensive seed data from the target distribution - limiting scalability and control. In this paper, we introduce Simula, a novel, seedless framework that balances global and local reasoning to generate synthetic datasets. We utilize taxonomies to capture a global coverage space and use a series of agentic refinements to promote local diversity and complexity. Our approach allows users to define desired dataset characteristics through an explainable and controllable process, without relying on seed data. This unlocks new opportunities for developing and deploying AI in domains where data scarcity or privacy concerns are paramount.
View details
Origin-destination travel demand estimation: an approach that scales worldwide, and its application to five metropolitan highway networks
Christopher Bian
Yechen Li
Willa Ng
Bin Yan
Janny Zhang
Transportation Research Part B: Methodological (2025) (to appear)
Preview abstract
Estimating Origin-Destination (OD) travel demand is vital for effective urban planning
and traffic management. Developing universally applicable OD estimation
methodologies is significantly challenged by the pervasive scarcity of high-fidelity traffic
data and the difficulty in obtaining city-specific prior OD estimates (or seed ODs), which
are often prerequisite for traditional approaches. Our proposed method directly
estimates OD travel demand by systematically leveraging aggregated, anonymized
statistics from Google Maps Traffic Trends, obviating the need for conventional census
or city-provided OD data. The OD demand is estimated by formulating a single-level,
one-dimensional, continuous nonlinear optimization problem with nonlinear equality
and bound constraints to replicate highway path travel times. The method achieves
efficiency and scalability by employing a differentiable analytical macroscopic network
model. This model by design is computationally lightweight, distinguished by its
parsimonious parameterization that requires minimal calibration effort and its capacity
for instantaneous evaluation. These attributes ensure the method's broad applicability
and practical utility across diverse cities globally. Using segment sensor counts from
Los Angeles and San Diego highway networks, we validate our proposed approach,
demonstrating a two-thirds to three-quarters improvement in the fit to segment count
data over a baseline. Beyond validation, we establish the method's scalability and
robust performance in replicating path travel times across diverse highway networks,
including Seattle, Orlando, Denver, Philadelphia, and Boston. In these expanded
evaluations, our method not only aligns with simulation-based benchmarks but also
achieves an average 13% improvement in it's ability to fit travel time data compared to
the baseline during afternoon peak hours.
View details
Preview abstract
In this article, we describe our human-centered research focused on understanding the role of collaboration and teamwork in productive software development. We describe creation of a logs-based metric to identify collaboration through observable events and a survey-based multi-item scale to assess team functioning.
View details
Avoid global outages by partitioning cloud applications to reduce blast radius
Karan Anand
https://cloud.google.com/ (2025)
Preview abstract
Cloud application development faces the inherent challenge of balancing rapid innovation with high availability. This blog post details how Google Workspace's Site Reliability Engineering team addresses this conflict by implementing vertical partitioning of serving stacks. By isolating application servers and storage into distinct partitions, the "blast radius" of code changes and updates is significantly reduced, minimizing the risk of global outages. This approach, which complements canary deployments, enhances service availability, provides flexibility for experimentation, and facilitates data localization. While challenges such as data model complexities and inter-service partition misalignment exist, the benefits of improved reliability and controlled deployments make partitioning a crucial strategy for maintaining robust cloud applications
View details
Towards Conversational AI for Disease Management
Khaled Saab
David Stutz
Kavita Kulkarni
Sara Mahdavi
Joelle Barral
James Manyika
Ryutaro Tanno
Adam Rodman
arXiv (2025)
Preview abstract
While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic system optimised for clinical management and dialogue, incorporating reasoning over the evolution of disease and multiple patient visit encounters, response to therapy, and professional competence in medication prescription. To ground its reasoning in authoritative clinical knowledge, AMIE leverages Gemini's long-context capabilities, combining in-context retrieval with structured reasoning to align its output with relevant and up-to-date clinical practice guidelines and drug formularies. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) study, AMIE was compared to 21 primary care physicians (PCPs) across 100 multi-visit case scenarios designed to reflect UK NICE Guidance and BMJ Best Practice guidelines. AMIE was non-inferior to PCPs in management reasoning as assessed by specialist physicians and scored better in both preciseness of treatments and investigations, and in its alignment with and grounding of management plans in clinical guidelines. To benchmark medication reasoning, we developed RxQA, a multiple-choice question benchmark derived from two national drug formularies (US, UK) and validated by board-certified pharmacists. While AMIE and PCPs both benefited from the ability to access external drug information, AMIE outperformed PCPs on higher difficulty questions. While further research would be needed before real-world translation, AMIE's strong performance across evaluations marks a significant step towards conversational AI as a tool in disease management.
View details
Ransomware over Modern Web Browsers: A Novel Strain and A New Defense Mechanism
Harun Oz
Ahmet Aris
Leonardo Babun
Selcuk Uluagac
Abbas Acar
ACM Transactions on the Web (2025)
Preview abstract
Ransomware is an increasingly prevalent form of malware targeting end-users, governments, and businesses. As it has evolved,
adversaries added new capabilities to their arsenal. Throughout the ransomware evolution, the adversaries propose a next-generation
browser-based ransomware, RøB, that performs its malicious actions via emerging web technologies, File System Access API (FSA) and
WebAssembly (Wasm). RøB uses this API through the victims’ browsers; hence, it does not require the victims to download and install
malicious binaries. We performed extensive evaluations with 3 different OSs, 23 file formats, 29 distinct directories, 5 cloud providers,
and 4 antivirus solutions. Our evaluations show that RøB can encrypt various types of files in the local and cloud-integrated directories,
external storage devices, and network-shared folders of victims. Our experiments also reveal that popular cloud solutions, Box
Individual and Apple iCloud can be severely affected by RøB. Moreover, we conducted tests with commercial antivirus software such
as AVG, Avast, Kaspersky, Malware Bytes that perform sensitive directory and suspicious behavior monitoring against ransomware.
We verified that RøB can evade these antivirus software and encrypt victim files. Moreover, existing ransomware detection solutions
in the literature also cannot be a remedy against RøB due to its distinct features. Therefore, in this paper, we also propose broguard,
a new detection system for RøB-like attacks. broguard monitors the web applications that use the FSA API via function hooking and
uses a machine learning classifier to detect RøB-like attacks in real-time without any file loss. Performance evaluations of broguard
on a comprehensive dataset show that broguard can detect RøB-like browser-based ransomware attacks with over 99% accuracy and
minimal overhead.
View details
Performance of a Deep Learning Diabetic Retinopathy Algorithm in India
Arthur Brant
Xiang Yin
Lu Yang
Divleen Jeji
Sunny Virmani
Anchintha Meenu
Naresh Babu Kannan
Florence Thng
Lily Peng
Ramasamy Kim
JAMA Network Open (2025)
Preview abstract
Importance: While prospective studies have investigated the accuracy of artificial intelligence (AI) for detection of diabetic retinopathy (DR) and diabetic macular edema (DME), to date, little published data exist on the clinical performance of these algorithms.
Objective: To evaluate the clinical performance of an automated retinal disease assessment (ARDA) algorithm in the postdeployment setting at Aravind Eye Hospital in India.
Design, Setting, and Participants: This cross-sectional analysis involved an approximate 1% sample of fundus photographs from patients screened using ARDA. Images were graded via adjudication by US ophthalmologists for DR and DME, and ARDA’s output was compared against the adjudicated grades at 45 sites in Southern India. Patients were randomly selected between January 1, 2019, and July 31, 2023.
Main Outcomes and Measures: Primary analyses were the sensitivity and specificity of ARDA for severe nonproliferative DR (NPDR) or proliferative DR (PDR). Secondary analyses focused on sensitivity and specificity for sight-threatening DR (STDR) (DME or severe NPDR or PDR).
Results: Among the 4537 patients with 4537 images with adjudicated grades, mean (SD) age was 55.2 (11.9) years and 2272 (50.1%) were male. Among the 3941 patients with gradable photographs, 683 (17.3%) had any DR, 146 (3.7%) had severe NPDR or PDR, 109 (2.8%) had PDR, and 398 (10.1%) had STDR. ARDA’s sensitivity and specificity for severe NPDR or PDR were 97.0% (95% CI, 92.6%-99.2%) and 96.4% (95% CI, 95.7%-97.0%), respectively. Positive predictive value (PPV) was 50.7% and negative predictive value (NPV) was 99.9%. The clinically important miss rate for severe NPDR or PDR was 0% (eg, some patients with severe NPDR or PDR were interpreted as having moderate DR and referred to clinic). ARDA’s sensitivity for STDR was 95.9% (95% CI, 93.0%-97.4%) and specificity was 94.9% (95% CI, 94.1%-95.7%); PPV and NPV were 67.9% and 99.5%, respectively.
Conclusions and Relevance: In this cross-sectional study investigating the clinical performance of ARDA, sensitivity and specificity for severe NPDR and PDR exceeded 96% and caught 100% of patients with severe NPDR and PDR for ophthalmology referral. This preliminary large-scale postmarketing report of the performance of ARDA after screening 600 000 patients in India underscores the importance of monitoring and publication an algorithm's clinical performance, consistent with recommendations by regulatory bodies.
View details
Circadian rhythm of heart rate and activity: a cross-sectional study
Maryam Khalid
Logan Schneider
Aravind Natarajan
Conor Heneghan
Karla Gleichauf
Chronobiology International (2025)
Preview abstract
ABSTRACT
Background: Circadian rhythms are commonly observed in a number of physiological processes. Consumer wearable devices have made it possible to obtain continuous time series data from a large number of individuals. We study circadian rhythms from measurements of heart rate, movement, and sleep, from a cohort of nearly 20,000 participants over the course of 30 days.
Methods: Participation was restricted to Fitbit users of age 21 years or older residing in the United States or Canada. Participants were enrolled through a recruitment banner shown on the Fitbit App. The advertisement was shown to 531,359 Fitbit users, and 23,239 enrolled in the program. Of these, we obtained heart rate data from 19,350 participants. We obtain the underlying circadian rhythm from time series heart rate by modeling the circadian rhythm as a sum over the first two Fourier harmonics. The first Fourier harmonic accounts for the 24-hour rhythmicity, while the second harmonic accounts for non-sinusoidal perturbations.
Findings: We observe a circadian rhythm in both heart rate and acceleration. From the diurnal modulation, we obtain the following circadian parameters: (i) amplitude of modulation, (ii) bathyphase, (iii) acrophase, (iv) non-sinusoidal fraction, and (v) fraction of day when the heart rate is greater than the mean. The amplitude, bathyphase, and acrophase depend on sex, and decrease with age. The waketime on average, follows the bathyphase by 2.4 hours. In most individuals, the circadian rhythm of heart rate lags the circadian rhythm of activity.
Interpretation: Circadian metrics for heart rate and activity can be reliably obtained from commercially available wearable devices. Distributions of circadian metrics can be valuable tools for individual-level interpretation.
View details
AI and Generative AI Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques
Aman Raj
Shashank Kapoor
IEEE Compsac 2025 (2025)
Preview abstract
Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response.
View details
Fast Tensor Completion via Approximate Richardson Iteration
Mehrdad Ghadiri
Yunbum Kook
Ali Jadbabaie
Proceedings of the 42nd International Conference on Machine Learning (2025)
Preview abstract
We study tensor completion (TC) through the lens of low-rank tensor decomposition (TD). Many TD algorithms use fast alternating minimization methods, which solve highly structured linear regression problems at each step (e.g., for CP, Tucker, and tensor-train decompositions). However, such algebraic structure is lost in TC regression problems, making direct extensions unclear. To address this, we propose a lifting approach that approximately solves TC regression problems using structured TD regression algorithms as blackbox subroutines, enabling sublinear-time methods. We theoretically analyze the convergence rate of our approximate Richardson iteration based algorithm, and we demonstrate on real-world tensors that its running time can be 100x faster than direct methods for CP completion.
View details