Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 11080 publications
CrossCheck: Input Validation for WAN Control Systems
Rishabh Iyer
Isaac Keslassy
Sylvia Ratnasamy
Networked Systems Design and Implementation (NSDI) (2026) (to appear)
Preview abstract
We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages.
Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data).
View details
Preview abstract
How many T gates are needed to approximate an arbitrary n-qubit quantum state to within
a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the
optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary
diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of
single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary
single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to
approximate just one single-qubit unitary.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
A Computer Vision Problem in Flatland
Erin Connelly
Annalisa Crannell
Timothy Duff
Rekha R. Thomas
SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
Preview abstract
When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image.
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
Sunny Rajagopalan
Alireza Golestaneh
Shubhra Chandra
Min Zhou
Jonathan Vronsky
Songbai Yan
2026
Preview abstract
We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs.
View details
Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
Michael Madaio
Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
Preview abstract
Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place?
View details
Preview abstract
Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL?
In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy.
We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data.
We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL.
Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL.
In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL.
View details
Private List Learnability vs. Online List Learnability
Hilla Schefler
Steve Hanneke
Iska Tsubari
Shay Moran
2025
Preview abstract
This work explores the connection between differential privacy (DP) and online learning in the context of PAC list learning. In this setting, a $k$-list learner outputs a list of $k$ potential predictions for an instance $x$ and incurs a loss if the true label of $x$ is not included in the list.
A basic result in the multiclass PAC framework with a finite number of labels states that private learnability is equivalent to online learnability [\citet*{AlonLMM19,BunLM20,JungKT20}].
Perhaps surprisingly, we show that this equivalence does not hold in the context of list learning.
Specifically, we prove that, unlike in the multiclass setting, a finite $k$-Littlestone dimension—a variant of the classical Littlestone dimension that characterizes online $k$-list learnability—is not a sufficient condition for DP $k$-list learnability.
However, similar to the multiclass case, we prove that it remains a necessary condition.
To demonstrate where the equivalence breaks down, we provide an example showing that the class of monotone functions with $k+1$ labels over $\mathbb{N}$ is online $k$-list learnable, but not DP $k$-list learnable.
This leads us to introduce a new combinatorial dimension, the \emph{$k$-monotone dimension}, which serves as a generalization of the threshold dimension.
Unlike the multiclass setting, where the Littlestone and threshold dimensions are finite together, for $k>1$, the $k$-Littlestone and $k$-monotone dimensions do not exhibit this relationship.
We prove that a finite $k$-monotone dimension is another necessary condition for DP $k$-list learnability, alongside finite $k$-Littlestone dimension.
Whether the finiteness of both dimensions implies private $k$-list learnability remains an open question.
View details
REGEN: A Dataset and Benchmarks with Natural Language Critiques and Narratives
Kun Su
Krishna Sayana
Hubert Pham
James Pine
Yuri Vasilevski
Raghavendra Vasudeva
Liam Hebert
Ambarish Jash
Anushya Subbiah
Sukhdeep Sodhi
(2025)
Preview abstract
This paper introduces a novel dataset REGEN (Reviews Enhanced with GEnerative Narratives), designed to benchmark the conversational capabilities of recommender Large Language Models (LLMs), addressing the limitations of existing datasets that primarily focus on sequential item prediction. REGEN extends the Amazon Product Reviews dataset by inpainting two key natural language features: (1) user critiques, representing user "steering" queries that lead to the selection of a subsequent item, and (2) narratives, rich textual outputs associated with each recommended item taking into account prior context. The narratives include product endorsements, purchase explanations, and summaries of user preferences.
Further, we establish an end-to-end modeling benchmark for the task of conversational recommendation, where models are trained to generate both recommendations and corresponding narratives conditioned on user history (items and critiques). For this joint task, we introduce a modeling framework LUMEN (LLM-based Unified Multi-task Model with Critiques, Recommendations, and Narratives) which uses an LLM as a backbone for critiquing, retrieval and generation. We also evaluate the dataset's quality using standard auto-rating techniques and benchmark it by training both traditional and LLM-based recommender models. Our results demonstrate that incorporating critiques enhances recommendation quality by enabling the recommender to learn language understanding and integrate it with recommendation signals. Furthermore, LLMs trained on our dataset effectively generate both recommendations and contextual narratives, achieving performance comparable to state-of-the-art recommenders and language models.
View details
Preview abstract
Measuring software development can help drive impactful change. However, it’s a complex task, and getting started can be daunting as it involves understanding what you should measure, and determining what you can measure. This article provides a guide to selecting a framework that aligns with organizational measurement strategy.
View details
LeakyFeeder: In-Air Gesture Control Through Leaky Acoustic Waves
Yongjie Yang
Tao Chen
Zhenlin An
Shirui Cao
Shangguan Longfei
SenSys 2025 - The 23rd ACM Conference on Embedded Networked Sensor Systems (2025)
Preview abstract
We present LeekyFeeder, a mobile application that explores the acoustic signals leaked from headphones to reconstruct gesture motions around the ear for fine-grained gesture control. To achieve this goal, LeekyFeeder reuses the speaker and feed-forward microphones on active noise cancellation (ANC) headphones as a SONAR system, emitting an inaudible frequency-modulated continuous-wave (FMCW) signal to track gesture reflections over time. Since this single-receiver SONAR system is unable to differentiate reflection angles and further disentangle signal reflections from different gesture parts, we draw on principles of multi-modal learning to frame gesture motion reconstruction as a multi-modal translation task and propose a deep learning-based approach to fill the information gap between low-dimensional FMCW ranging readings and high-dimensional 3D hand movements. We implement LeekyFeeder on a pair of Google Pixel Buds and conduct experiments to examine the efficacy and robustness of LeekyFeeder in various conditions. Experiments based on six gesture types inspired by Apple Vision Pro demonstrate that LeekyFeeder achieves a PCK performance of 89% at 3cm across ten users, with an average MPJPE and MPJRPE error of 2.71cm and 1.88cm, respectively.
View details
Preview abstract
Fine-tuning language models (LMs) with the standard Adam optimizer often demands excessive memory, limiting accessibility. The "in-place" version of Stochastic Gradient Descent (IP-SGD) and Memory-Efficient Zeroth-order Optimizer (MeZO) have been proposed as solutions to improve memory efficiency. However, IP-SGD still requires a decent amount of memory, and MeZO suffers from slow convergence and degraded final performance due to its zeroth-order nature. This paper introduces Addax, a novel method that improves both memory efficiency and algorithm performance of IP-SGD by integrating it with MeZO. Specifically, Addax computes the zeroth-order or first-order gradient of the data points in the mini-batch based on their memory consumption and combines zeroth- and first-order gradient estimates to obtain the updated direction in each step. By computing the zeroth-order order gradient of data points that require more memory and the first-order gradient of the ones that require less memory, Addax overcomes the slow convergence of MeZO and excessive memory requirement of IP-SGD. Additionally, the zeroth-order gradient acts as a regularizer for the first-order gradient, further enhancing the model's final performance. Theoretically, we establish the convergence of Addax under mild assumptions, demonstrating faster convergence and less restrictive hyperparameter choices than MeZO. Our extensive experiments with diverse LMs and tasks show that Addax consistently outperforms MeZO in terms of accuracy and convergence speed, while having a comparable memory footprint. In particular, our experiments using one A100 GPU on OPT-13B model reveal that, on average, Addax outperforms MeZO in terms of accuracy/F1 score by 14%, and runs 15x faster, while having a comparable memory footprint to MeZO. In our experiments on the larger OPT-30B model, on average, Addax outperforms MeZO in terms of accuracy/F1 score by >16% and runs 30x faster on a single H100 GPU. Moreover, Addax surpasses the performance of standard fine-tuning approaches, such as IP-SGD and Adam, in most tasks in terms of Accuracy/F1 score with significantly less memory requirement.
View details
Synthesizing 3D Abstractions by Inverting Procedural Buildings with Transformers
Max Dax
Jordi Serrano Berbel
Jan Stria
Leonidas Guibas
Urs Bergmann
2025
Preview abstract
We generate abstractions of buildings, reflecting the essential aspects of their geometry and structure, by learning to invert procedural models. We first build a dataset of abstract procedural building models paired with simulated point clouds and then learn the inverse mapping through a transformer. Given a point cloud, the trained transformer then infers the corresponding abstracted building in terms of a programmatic language description. This approach leverages expressive procedural models developed for gaming and animation, and thereby retains desirable properties such as efficient rendering of the inferred abstractions and strong priors for regularity and symmetry. Our approach achieves good reconstruction accuracy in terms of geometry and structure, as well as structurally consistent inpainting.
View details
Cortina Conference Opening Remarks
Yu Chen
(2025)
Preview abstract
Giving a short opening remark presentation at a Google host conference about superconducting qubits (https://ai-quantum.cortinadampezzo.it/). This is just high-level review the progress and challenges in the field of superconducting qubits
View details