Yossi Matias

Yossi Matias

Yossi Matias is Vice President, Google, and the Head of Google Research.

Under Yossi’s leadership, world-class global teams are leading breakthrough research on Foundational Machine Learning & Algorithms, Computing Systems & Quantum, Science, AI for Societal Impact in Health, Climate, Sustainability, Education and Socio-technical research, and advancement of Generative AI - driving real-world impact and shaping the future of technology.

Yossi was previously on Google Search leadership for over a decade, driving strategic features and technologies, and pioneered Conversational AI innovations to help transform the phone experience and help remove barriers of modality and languages. He was also the founding lead of Google center in Israel and supported other global sites. During his tenure at Google Yossi founded and spearheaded initiatives such as Google's AI for Social Good, Crisis Response, Google for Startups Accelerator, social and cultural initiatives seeding Google Arts & Culture, and programs fostering startups, sustainability, and STEM and AI literacy for youth.

Prior to Google Yossi was on the Computer Science faculty at Tel Aviv University, a visiting professor at Stanford, and a Research Scientist at Bell Labs. He’s published over 200 papers and is the inventor of over 75 patents. He pioneered some of the early technologies for internet privacy, contextual search, and the effective analysis of Big Data. He is a recipient of the Gödel Prize, an ACM Fellow, and a recipient of the ACM Kanellakis Theory and Practice Award for seminal work on streaming algorithms, data sketches, and large-scale data analytics

Yossi has a track record of impact-driven breakthrough research, innovation, advancing society-centered AI to help address global challenges and extensive product leadership. He is committed to advancing research and AI to help improve lives, transform society, and create a better future for all.

--------------------------------------------------

More about some of Yossi's work over the past years:

His team's work on Google’s Health AI is driving AI research to help transform healthcare, and help make healthcare more accessible for everyone, with multiple breakthroughs including Med-PaLM. Leadership of AI for Climate and Sustainability, work on climate crisis mitigation (e.g., Greenlight) as well as adaptation - with leadership work on Google’s Crisis Response initiative (SOS alerts, flood forecasting, wildfire detection).

Yossi's work on Generative AI includes efforts on Factuality (inc leading to Bard’s Double Check) and Efficiency (Speculative Decoding). He pioneered Conversational AI innovations towards ambient intelligence to help transforming the phone experience (Google Duplex, Call Screen, Hold for Me) and help remove barriers of modality and languages (Live Caption, Live Relay, Euphonia, Read Aloud).

He is a founding lead of Google’s AI for Social Good, Google for Startup Accelerator (with particular focus on AI & ML), Startups for Sustainable Development and Mind the Gap. He pioneered an initiative of bringing online hundreds of heritage collections (including the Dead Sea Scrolls), and helped establish Google’s Cultural Institute.

His work on Search included Autocomplete, Google Trends, Search Console, and Search experiences in weather, sports, dictionary and more. He founded and has lead Google’s center in Israel, through growth to over 2500 on staff, supported Google’s growth (4X) in Bangalore, India, and oversaw Google’s Expanding Research Center in Africa.

Yossi is an ACM Fellow for contributions to the analysis of large data sets and data streams. His foundational work on data streams, data synopses and sketches, motivated by computational challenges in what was then the world’s largest data warehouses, was recognized with the the Gödel Prize in Theoretical Computer Science, and with the ACM Kanellakis Theory and Practice Award for the instrumental role it played "in the development of the field of streaming algorithms, which is one of the most prolific and highly regarded areas of data management research" and its broad applicability to large-scale data analytics.

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Closing the AI generalisation gap by adjusting for dermatology condition distribution differences across clinical settings
    Rajeev Rikhye
    Aaron Loh
    Grace Hong
    Margaret Ann Smith
    Vijaytha Muralidharan
    Doris Wong
    Michelle Phung
    Nicolas Betancourt
    Bradley Fong
    Rachna Sahasrabudhe
    Khoban Nasim
    Alec Eschholz
    Basil Mustafa
    Jan Freyberg
    Terry Spitz
    Kat Chou
    Peggy Bui
    Justin Ko
    Steven Lin
    The Lancet eBioMedicine (2025)
    Triaging mammography with artificial intelligence: an implementation study
    Sarah M. Friedewald
    Sunny Jansen
    Fereshteh Mahvar
    Timo Kohlberger
    David V. Schacht
    Sonya Bhole
    Dipti Gupta
    Scott Mayer McKinney
    Stacey Caron
    David Melnick
    Mozziyar Etemadi
    Samantha Winter
    Alejandra Maciel
    Luca Speroni
    Martha Sevenich
    Arnav Agharwal
    Rubin Zhang
    Gavin Duggan
    Shiro Kadowaki
    Atilla Kiraly
    Jie Yang
    Basil Mustafa
    Krish Eswaran
    Shravya Shetty
    Breast Cancer Research and Treatment (2025)
    LLM-based Lossless Text Simplification and its Effect on User Comprehension and Cognitive Load
    Theo Guidroz
    Diego Ardila
    Jimmy Li
    Adam Mansour
    Paul Jhun
    Nina Gonzalez
    Xiang Ji
    Mike Sanchez
    Miguel Ángel Garrido
    Divyansh Choudhary
    Jay Hartford
    Georgina Xu
    Henry Serrano
    Yifan Wang
    Jeff Shaffer
    Eric (Yifan) Cao
    Sho Fujiwara
    Peggy Bui
    arXiv (2025)
    Performance of a Deep Learning Diabetic Retinopathy Algorithm in India
    Arthur Brant
    Xiang Yin
    Lu Yang
    Divleen Jeji
    Sunny Virmani
    Anchintha Meenu
    Naresh Babu Kannan
    Florence Thng
    Lily Peng
    Ramasamy Kim
    JAMA Network Open (2025)
    Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning
    Sebastien Baur
    Mayank Daswani
    Christina Chen
    Mariam Jabara
    Babak Behsaz
    Shravya Shetty
    Goodarz Danaei
    Diego Ardila
    PLOS Global Public Health, 4(6) (2024), e0003204
    Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements
    Abbi Ward
    Jimmy Li
    Julie Wang
    Sriram Lakshminarasimhan
    Ashley Carrick
    Jay Hartford
    Pradeep Kumar S
    Sunny Virmani
    Renee Wong
    Margaret Ann Smith
    Dawn Siegel
    Steven Lin
    Justin Ko
    JAMA Network Open (2024)
    Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
    Brenna Li
    Amy Wang
    Patricia Strachan
    Julie Anne Seguin
    Sami Lachgar
    Karyn Schroeder
    Renee Wong
    Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
    Differences between Patient and Clinician Submitted Images: Implications for Virtual Care of Skin Conditions
    Rajeev Rikhye
    Grace Eunhae Hong
    Margaret Ann Smith
    Aaron Loh
    Vijaytha Muralidharan
    Doris Wong
    Michelle Phung
    Nicolas Betancourt
    Bradley Fong
    Rachna Sahasrabudhe
    Khoban Nasim
    Alec Eschholz
    Kat Chou
    Peggy Bui
    Justin Ko
    Steven Lin
    Mayo Clinic Proceedings: Digital Health (2024)