Kuang-Huei Lee

Kuang-Huei Lee

I am a Research Scientist at Google DeepMind, where I primarily focus on artificial agents. My work spans a broad spectrum -- from robotics to large language models (LLMs)."

https://kuanghuei.github.io
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Google
Multimodal Web Navigation with Instruction-Finetuned Foundation Models
Hiroki Furuta
Ofir Nachum
Yutaka Matsuo
Shane Gu
Izzeddin Gur
International Conference on Learning Representations (ICLR) (2024)
Deep RL at Scale: Sorting Waste in Office Buildings with a Fleet of Mobile Manipulators
Jarek Rettinghouse
Daniel Ho
Julian Ibarz
Sangeetha Ramesh
Matt Bennice
Alexander Herzog
Chuyuan Kelly Fu
Adrian Li
Kim Kleiven
Jeff Bingham
Yevgen Chebotar
David Rendleman
Wenlong Lu
Mohi Khansari
Mrinal Kalakrishnan
Ying Xu
Noah Brown
Khem Holden
Justin Vincent
Peter Pastor Sampedro
Jessica Lin
David Dovo
Daniel Kappler
Mengyuan Yan
Sergey Levine
Jessica Lam
Jonathan Weisz
Paul Wohlhart
Karol Hausman
Cameron Lee
Bob Wei
Yao Lu
2023
PI-QT-Opt: Predictive Information Improves Multi-Task Robotic Reinforcement Learning at Scale
Adrian Li
Paul Wohlhart
Ian Fischer
Yao Lu
Conference on Robot Learning (CoRL) (2022)
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Alexander Herzog
Alexander Toshkov Toshev
Andy Zeng
Anthony Brohan
Brian Andrew Ichter
Byron David
Chelsea Finn
Clayton Tan
Diego Reyes
Dmitry Kalashnikov
Eric Victor Jang
Jarek Liam Rettinghouse
Jornell Lacanlale Quiambao
Julian Ibarz
Karol Hausman
Kyle Alan Jeffrey
Linda Luu
Mengyuan Yan
Michael Soogil Ahn
Nicolas Sievers
Noah Brown
Omar Eduardo Escareno Cortes
Peng Xu
Peter Pastor Sampedro
Rosario Jauregui Ruano
Sally Augusta Jesmonth
Sergey Levine
Steve Xu
Yao Lu
Yevgen Chebotar
Yuheng Kuang
Conference on Robot Learning (CoRL) (2022)
Deep Hierarchical Planning from Pixels
Danijar Hafner
Ian Fischer
Pieter Abbeel
Advances in Neural Information Processing Systems (NeurIPS) (2022)
Multi-Game Decision Transformers
Ofir Nachum
Sherry Yang
Daniel Freeman
Winnie Xu
Ian Fischer
Eric Victor Jang
Henryk Witold Michalewski
Igor Mordatch
Advances in Neural Information Processing Systems (NeurIPS) (2022)
Compressive Visual Representations
Anurag Arnab
John Canny
Ian Fischer
Advances in Neural Information Processing Systems (NeurIPS) (2021)
An Empirical Investigation of Representation Learning for Imitation
Xin Chen
Sam Toyer
Cody Wild
Scott Emmons
Ian Fischer
Satyan Alex
Steven Wang
Ping Luo
Stuart Russell
Pieter Abbeel
Rohin Shah
Advances in Neural Information Processing Systems (NeurIPS) (2021)
Learning Task Sampling Policy for Multitask Learning
Dhanasekar Sundararaman
Henry Tsai
Iulia Raluca Turc
Lawrence Carin
Findings of EMNLP (2021)