Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10473 publications
    Preview abstract Web browser fingerprinting can be used to identify and track users across the Web, even without cookies, by collecting attributes from users' devices to create unique "fingerprints". This technique and resulting privacy risks have been studied for over a decade. Yet further research is limited because prior studies did not openly publish their data. Additionally, data in prior studies had biases and lacked user demographics. Here we publish a first-of-its-kind open dataset that includes browser attributes with users' demographics, collected from 8,400 US study participants, with their informed consent. Our data collection process also conducted an experiment to study what impacts users' likelihood to share browser data for open research, in order to inform future data collection efforts, with survey responses from a total of 12,461 participants. Female participants were significantly less likely to share their browser data, as were participants who were shown the browser data we asked to collect. In addition we demonstrate how fingerprinting risks differ across demographic groups. For example, we find lower income users are more at risk, and find that as users' age increases, they are both more likely to be concerned about fingerprinting and at real risk of fingerprinting. Furthermore, we demonstrate an overlooked risk: user demographics, such as gender, age, income level, ethnicity and race, can be inferred from browser attributes commonly used for fingerprinting, and we identify which browser attributes most contribute to this risk. Overall, we show the important role of user demographics in the ongoing work that intends to assess fingerprinting risks and improve user privacy, with findings to inform future privacy enhancing browser developments. The dataset and data collection tool we openly publish can be used to further study research questions not addressed in this work. View details
    Preview abstract Google has a long tradition of open-source software, which encompasses the field of operations research with OR-Tools. In development since 2008, it offers several solvers useful to many OR practitioners: - PDLP, a revolutionary first-order linear solver that is reshaping the landscape of linear optimisation; - CP-SAT, an award-winning constraint-programming solver; - Glop, an accurate linear solver; - Routing, a vehicle routing solver underpinning Google Maps Platform Route Optimization. OR-Tools has long had its features accessible from other languages: the core algorithms are implemented in C++ for performance, but users can tap into them in Python, Java, C#, or Go. It is recently available in Julia too, with a current focus on the linear and constraint solvers, either locally or remotely. We provide a wrapper for our solvers that brings them to JuMP.jl through MathOptInterface.jl. This tutorial will walk you through the features of OR-Tools and its solvers, then show examples of using OR-Tools from within Julia, either through JuMP or a lower-level interface. We will also share our experience of C++-Julia interop. View details
    Preview abstract While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic system optimised for clinical management and dialogue, incorporating reasoning over the evolution of disease and multiple patient visit encounters, response to therapy, and professional competence in medication prescription. To ground its reasoning in authoritative clinical knowledge, AMIE leverages Gemini's long-context capabilities, combining in-context retrieval with structured reasoning to align its output with relevant and up-to-date clinical practice guidelines and drug formularies. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) study, AMIE was compared to 21 primary care physicians (PCPs) across 100 multi-visit case scenarios designed to reflect UK NICE Guidance and BMJ Best Practice guidelines. AMIE was non-inferior to PCPs in management reasoning as assessed by specialist physicians and scored better in both preciseness of treatments and investigations, and in its alignment with and grounding of management plans in clinical guidelines. To benchmark medication reasoning, we developed RxQA, a multiple-choice question benchmark derived from two national drug formularies (US, UK) and validated by board-certified pharmacists. While AMIE and PCPs both benefited from the ability to access external drug information, AMIE outperformed PCPs on higher difficulty questions. While further research would be needed before real-world translation, AMIE's strong performance across evaluations marks a significant step towards conversational AI as a tool in disease management. View details
    Closing the AI generalisation gap by adjusting for dermatology condition distribution differences across clinical settings
    Rajeev Rikhye
    Aaron Loh
    Grace Hong
    Margaret Ann Smith
    Vijaytha Muralidharan
    Doris Wong
    Michelle Phung
    Nicolas Betancourt
    Bradley Fong
    Rachna Sahasrabudhe
    Khoban Nasim
    Alec Eschholz
    Basil Mustafa
    Jan Freyberg
    Terry Spitz
    Kat Chou
    Peggy Bui
    Justin Ko
    Steven Lin
    The Lancet eBioMedicine (2025)
    Preview abstract Background: Generalisation of artificial intelligence (AI) models to a new setting is challenging. In this study, we seek to understand the robustness of a dermatology (AI) model and whether it generalises from telemedicine cases to a new setting including both patient-submitted photographs (“PAT”) and clinician-taken photographs in-clinic (“CLIN”). Methods: A retrospective cohort study involving 2500 cases previously unseen by the AI model, including both PAT and CLIN cases, from 22 clinics in the San Francisco Bay Area, spanning November 2015 to January 2021. The primary outcome measure for the AI model and dermatologists was the top-3 accuracy, defined as whether their top 3 differential diagnoses contained the top reference diagnosis from a panel of dermatologists per case. Findings: The AI performed similarly between PAT and CLIN images (74% top-3 accuracy in CLIN vs. 71% in PAT), however, dermatologists were more accurate in PAT images (79% in CLIN vs. 87% in PAT). We demonstrate that demographic factors were not associated with AI or dermatologist errors; instead several categories of conditions were associated with AI model errors (p < 0.05). Resampling CLIN and PAT to match skin condition distributions to the AI development dataset reduced the observed differences (AI: 84% CLIN vs. 79% PAT; dermatologists: 77% CLIN vs. 89% PAT). We demonstrate a series of steps to close the generalisation gap, requiring progressively more information about the new dataset, ranging from the condition distribution to additional training data for rarer conditions. When using additional training data and testing on the dataset without resampling to match AI development, we observed comparable performance from end-to-end AI model fine tuning (85% in CLIN vs. 83% in PAT) vs. fine tuning solely the classification layer on top of a frozen embedding model (86% in CLIN vs. 84% in PAT). Interpretation: AI algorithms can be efficiently adapted to new settings without additional training data by recalibrating the existing model, or with targeted data acquisition for rarer conditions and retraining just the final layer. View details
    A Scalable Framework for Evaluating Health Language Models
    Neil Mallinar
    Tony Faranesh
    Brent Winslow
    Nova Hammerquist
    Ben Graef
    Cathy Speed
    Mark Malhotra
    Shwetak Patel
    Xavi Prieto
    Daniel McDuff
    Ahmed Metwally
    (2025)
    Preview abstract Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health. View details
    MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
    Nilay Pande
    Sahiti Yerramilli
    Jayant Tamarapalli
    Rynaa Grover
    (2025)
    Preview abstract A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities. View details
    Supporting the Digital Safety of At-Risk Users: Lessons Learned from 9+ Years of Research and Training
    Tara Matthews
    Patrick Gage Kelley
    Lea Kissner
    Andreas Kramm
    Andrew Oplinger
    Andy Schou
    Stephan Somogyi
    Dalila Szostak
    Jill Woelfer
    Lawrence You
    Izzie Zahorian
    ACM Transactions on Computer-Human Interaction, 32(3) (2025), pp. 1-39
    Preview abstract Creating information technologies intended for broad use that allow everyone to participate safely online—which we refer to as inclusive digital safety—requires understanding and addressing the digital-safety needs of a diverse range of users who face elevated risk of technology-facilitated attacks or disproportionate harm from such attacks—i.e., at-risk users. This article draws from more than 9 years of our work at Google to understand and support the digital safety of at-risk users—including survivors of intimate partner abuse, people involved with political campaigns, content creators, youth, and more—in technology intended for broad use. Among our learnings is that designing for inclusive digital safety across widely varied user needs and dynamic contexts is a wicked problem with no “correct” solution. Given this, we describe frameworks and design principles we have developed to help make at-risk research findings practically applicable to technologies intended for broad use and lessons we have learned about communicating them to practitioners. View details
    Data Quality Issues in Multilingual Speech Datasets: The Need for Sociolinguistic Awareness and Proactive Language Planning
    Mingfei Lau
    Allen Chen
    Yeming Fang
    Tingting Xu
    Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics (ACL), Vienna, Austria (2025), 7466–7492
    Preview
    CountQA: How Well Do MLLMs Count in the Wild?
    Jayant Tamarapalli
    Rynaa Grover
    Nilay Pande
    Sahiti Yerramilli
    (2025)
    Preview abstract While Multimodal Large Language Models (MLLMs) display a remarkable fluency in describing visual scenes, their ability to perform the fundamental task of object counting remains poorly understood. This paper confronts this issue by introducing CountQA, a challenging new benchmark composed of over 1,500 question-answer pairs centered on images of everyday, real-world objects, often in cluttered and occluded arrangements. Our evaluation of 15 prominent MLLMs on CountQA systematically investigates this weakness, revealing a critical failure of numerical grounding: the models consistently struggle to translate raw visual information into an accurate quantity. By providing a dedicated tool to probe this foundational weakness, CountQA paves the way for the development of more robust and truly capable MLLMs that are spatially aware and numerically grounded. View details
    Matryoshka Model Learning for Improved Elastic Student Models
    Cho-Jui Hsieh
    Chetan Verma
    Inderjit Dhillon
    Xin Liu
    Wen Chen
    Ngot Bui
    Yang Zhang
    2025
    Preview abstract Production machine learning models in the industry are often devel-oped with a primary focus on maximizing model quality. However,these models must ultimately operate within the resource con-straints of their serving infrastructure, including limitations on com-pute, memory and bandwidth. The rapid evolution of serving hard-ware, particularly with advancements in accelerator technology,necessitates periodic retraining to leverage newer, more efficientinfrastructure. This cyclical retraining process is resource-intensive,demanding significant model development time and incurring sub-stantial training costs. This challenge is further amplified by thetrend towards increasingly complex models, which inherently re-quire greater computational resources for training and deployment.While prior work has explored techniques like supernet sub-modelextraction to address training efficiency, a critical gap remains: theefficient generation of a spectrum of high-quality models froman existing production model, a common requirement in diverseindustrial applications. To bridge this gap, we introduce a novel ap-proach leveraging a "Teaching Assistant" (TA) model, derived froma given production model (referred to as the Student model). Wedemonstrate that through co-training the Student and TA modelswith Matryoshka structure while using online distillation, we notonly enhance the Student model’s performance but also enable theflexible creation of a model family offering a compelling trade-offbetween model quality and model size. View details
    Calibration Properties of Time-Series Foundation Models: An Empirical Analysis
    Coen Adler
    Samar Abdi
    Yuxin Chang
    Padhraic Smyth
    2025
    Preview abstract Recent development of foundation models for time series data has generated considerable interest in using such models across a variety of applications. Although they achieve state-of-the-art predictive performance, the ability to produce well-calibrated probabilistic distributions is critical for practical applications and is relatively underexplored. In this paper, we investigate the calibration-related properties of five recent time series foundation models and two competitive baselines. We perform systematic evaluations and identify significant variation in calibration performances across models. View details
    Preview abstract In the differentially private partition selection problem (a.k.a. private set union, private key discovery), users hold subsets of items from an unbounded universe. The goal is to output as many items as possible from the union of the users' sets while maintaining user-level differential privacy. Solutions to this problem are a core building block for many privacy-preserving ML applications including vocabulary extraction in a private corpus, computing statistics over categorical data and learning embeddings over user-provided items. We propose an algorithm for this problem, MaxAdaptiveDegree(MAD), which adaptively reroutes weight from items with weight far above the threshold needed for privacy to items with smaller weight, thereby increasing the probability that less frequent items are output. Our algorithm can be efficiently implemented in massively parallel computation systems allowing scalability to very large datasets. We prove that our algorithm stochastically dominates the standard parallel algorithm for this problem. We also develop a two-round version of our algorithm, MAD2R, where results of the computation in the first round are used to bias the weighting in the second round to maximize the number of items output. In experiments, our algorithms provide the best results across the board among parallel algorithms and scale to datasets with hundreds of billions of items, up to three orders of magnitude larger than those analyzed by prior sequential algorithms. View details
    Preview abstract Unifying query languages is key in reducing toil for app developers and end users to query and analyze observability data. A common query language that can leverage all observability data such as metrics, traces, profiles, events, logs to facilitate correlation, support trend analytics and provide end-to-end observability for AI applications. The Observability TAG QLS workgroup is finalizing a semantic query language spec in 2025 and is recommending SQL as a basis with further experimentation on syntaxes. This talk will explore the design principles, user research and challenges of creating a query language to support observability goals. It will delve into the core concepts, syntax, and semantics of SQL operators and its needed syntactic sugar, while addressing the unique requirements of observability data. It will also explore the trade-offs between simplicity, expressiveness, and performance. This query language convergence for end-to-end analytics could enhance reliability and operational efficiency for SREs and your app developers. A win-win for all. View details
    Preview abstract Measuring software development can help drive impactful change. However, it’s a complex task, and getting started can be daunting as it involves understanding what you should measure, and determining what you can measure. This article provides a guide to selecting a framework that aligns with organizational measurement strategy. View details
    Neural Speech and Audio Coding
    Minje Kim
    IEEE Signal Processing Magazine, 41 (2025), pp. 85-93
    Preview abstract This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs’ output, along with the autoencoder-based end-to-end models and LPCNet—hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques. View details