Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11090 publications
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    Quantum algorithm for linear matrix equations
    Rolando Somma
    Guang Hao Low
    Dominic Berry
    arXiv (2025)
    Preview abstract We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B, and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Our approach constructs the solution matrix X/x in a block-encoding, where x is a rescaling factor needed for normalization. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems. View details
    Preview abstract Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response. View details
    Matryoshka Model Learning for Improved Elastic Student Models
    Cho-Jui Hsieh
    Chetan Verma
    Inderjit Dhillon
    Xin Liu
    Wen Chen
    Ngot Bui
    Yang Zhang
    2025
    Preview abstract Production machine learning models in the industry are often devel-oped with a primary focus on maximizing model quality. However,these models must ultimately operate within the resource con-straints of their serving infrastructure, including limitations on com-pute, memory and bandwidth. The rapid evolution of serving hard-ware, particularly with advancements in accelerator technology,necessitates periodic retraining to leverage newer, more efficientinfrastructure. This cyclical retraining process is resource-intensive,demanding significant model development time and incurring sub-stantial training costs. This challenge is further amplified by thetrend towards increasingly complex models, which inherently re-quire greater computational resources for training and deployment.While prior work has explored techniques like supernet sub-modelextraction to address training efficiency, a critical gap remains: theefficient generation of a spectrum of high-quality models froman existing production model, a common requirement in diverseindustrial applications. To bridge this gap, we introduce a novel ap-proach leveraging a "Teaching Assistant" (TA) model, derived froma given production model (referred to as the Student model). Wedemonstrate that through co-training the Student and TA modelswith Matryoshka structure while using online distillation, we notonly enhance the Student model’s performance but also enable theflexible creation of a model family offering a compelling trade-offbetween model quality and model size. View details
    Preview abstract Estimating Origin-Destination (OD) travel demand is vital for effective urban planning and traffic management. Developing universally applicable OD estimation methodologies is significantly challenged by the pervasive scarcity of high-fidelity traffic data and the difficulty in obtaining city-specific prior OD estimates (or seed ODs), which are often prerequisite for traditional approaches. Our proposed method directly estimates OD travel demand by systematically leveraging aggregated, anonymized statistics from Google Maps Traffic Trends, obviating the need for conventional census or city-provided OD data. The OD demand is estimated by formulating a single-level, one-dimensional, continuous nonlinear optimization problem with nonlinear equality and bound constraints to replicate highway path travel times. The method achieves efficiency and scalability by employing a differentiable analytical macroscopic network model. This model by design is computationally lightweight, distinguished by its parsimonious parameterization that requires minimal calibration effort and its capacity for instantaneous evaluation. These attributes ensure the method's broad applicability and practical utility across diverse cities globally. Using segment sensor counts from Los Angeles and San Diego highway networks, we validate our proposed approach, demonstrating a two-thirds to three-quarters improvement in the fit to segment count data over a baseline. Beyond validation, we establish the method's scalability and robust performance in replicating path travel times across diverse highway networks, including Seattle, Orlando, Denver, Philadelphia, and Boston. In these expanded evaluations, our method not only aligns with simulation-based benchmarks but also achieves an average 13% improvement in it's ability to fit travel time data compared to the baseline during afternoon peak hours. View details
    Preview abstract Large language models (LLMs) have showcased remarkable reasoning capabilities, yet they remain susceptible to errors, particularly in temporal reasoning tasks involving complex temporal logic. Existing research has explored LLM performance on temporal reasoning using diverse datasets and benchmarks. However, these studies often rely on real-world data that LLMs may have encountered during pre-training or employ anonymization techniques that can inadvertently introduce factual inconsistencies. In this work, we address these limitations by introducing novel synthetic and real-world datasets specifically designed to assess LLM temporal reasoning abilities in various scenarios. We automatically generate a wide range of questions across these datasets, enabling systematic investigation into the impact of graph structure, size, question type, fact order, and other factors on LLM performance. Our findings provide valuable insights into the strengths and weaknesses of current LLMs in temporal reasoning tasks. To foster further research in this area, we are open-sourcing the datasets and evaluation framework used in our experiments. View details
    Responsible AI measures dataset for ethics evaluation of AI systems
    Shalaleh Rismani
    Leah Davis
    Bonam Mingole
    AJung Moon
    Scientific Data (2025)
    Preview abstract Meaningful governance of any system requires the system to be assessed and monitored effectively. In the domain of Artificial Intelligence (AI), global efforts have established a set of ethical principles, including fairness, transparency, and privacy upon which AI governance expectations are being built. The computing research community has proposed numerous means of measuring an AI system’s normative qualities along these principles. Current reporting of these measures is principle-specific, limited in scope, or otherwise dispersed across publication platforms, hindering the domain’s ability to critique its practices. To address this, we introduce the Responsible AI Measures Dataset, consolidating 12,067 data points across 791 evaluation measures covering 11 ethical principles. It is extracted from a corpus of computing literature (n = 257) published between 2011 and 2023. The dataset includes detailed descriptions of each measure, AI system characteristics, and publication metadata. An accompanying, interactive visualization tool supports usability and interpretation of the dataset. The Responsible AI Measures Dataset enables practitioners to explore existing assessment approaches and critically analyze how the computing domain measures normative concepts. View details
    Preview abstract We consider the question of learnability of distribution classes in the presence of adaptive adversaries – that is, adversaries capable of inspecting the whole sample requested by a learner and applying their manipulations before passing it on to the learner. We formulate a general notion of learnability with respect to adaptive adversaries, taking into account the budget of the adversary. We show that learnability with respect to additive adaptive adversaries is a strictly stronger condition than learnability with respect to additive oblivious adversaries. View details
    ×