Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10070 publications
Preview abstract
We propose OmniNOCS, a large-scale monocular dataset with 3D Normalized Object Coordinate Space (NOCS) maps, object masks, and 3D bounding box annotations for indoor and outdoor scenes. OmniNOCS has 20 times more object classes and 200 times more instances than existing NOCS datasets (NOCS-Real275, Wild6D). We use OmniNOCS to train a novel, transformer-based monocular NOCS prediction model (NOCSformer) that can predict accurate NOCS, instance masks and poses from 2D object detections across diverse classes. It is the first NOCS model that can generalize to a broad range of classes when prompted with 2D boxes. We evaluate our model on the task of 3D oriented bounding box prediction, where it achieves comparable results to state-of-the-art 3D detection methods such as Cube R-CNN. Unlike other 3D detection methods, our model also provides detailed and accurate 3D object shape and segmentation. We propose a novel benchmark for the task of NOCS prediction based on OmniNOCS, which we hope will serve as a useful baseline for future work in this area. Our dataset and code is available at the project website: https://omninocs.github.io
View details
Preview abstract
We extend conformal prediction to control the expected value of any monotone loss function. The
algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal
prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from
computer vision and natural language processing demonstrate the usage of our algorithm to bound the
false negative rate, graph distance, and token-level F1-score.
View details
Preview abstract
The InterPlanetary File System (IPFS) is on its way to becoming the backbone of the next generation of the web. However, it suffers from several performance bottlenecks, particularly on the content retrieval path, which are often difficult to debug. This is because content retrieval involves multiple peers on the decentralized network and the issue could lie anywhere in the network. Traditional debugging tools are insufficient to help web developers who face the challenge of slow loading websites and detrimental user experience. This limits the adoption and future scalability of IPFS.
In this paper, we aim to gain valuable insights into how content retrieval requests propagate within the IPFS network as well as identify potential performance bottlenecks which could lead to opportunities for improvement. We propose a custom tracing framework that generates and manages traces for crucial events that take place on each peer during content retrieval. The framework leverages event semantics to build a timeline of each protocol involved in the retrieval, helping developers pinpoint problems. Additionally, it is resilient to malicious behaviors of the peers in the decentralized environment.
We have implemented this framework on top of an existing IPFS implementation written in Java called Nabu. Our evaluation shows that the framework can identify network delays and issues with each peer involved in content retrieval requests at a very low overhead.
View details
Preview abstract
In this paper, we explore the challenges of ensuring security and privacy for users from diverse demographic backgrounds. We propose a threat modeling approach to identify potential risks and countermeasures for product inclusion in security and privacy. We discuss various factors that can affect a user's ability to achieve a high level of security and privacy, including low-income demographics, poor connectivity, shared device usage, ML fairness, etc. We present results from a global security and privacy user experience survey and discuss the implications for product developers. Our work highlights the need for a more inclusive approach to security and privacy and provides a framework for researchers and practitioners to consider when designing products and services for a diverse range of users.
View details
Preview abstract
Generative AI (GAI) is proliferating, and among its many applications are to support creative work (e.g., generating text, images, music) and to enhance accessibility (e.g., captions of images and audio). As GAI evolves, creatives must consider how (or how not) to incorporate these tools into their practices. In this paper, we present interviews at the intersection of these applications. We learned from 10 creatives with disabilities who intentionally use and do not use GAI in and around their creative work. Their mediums ranged from audio engineering to leatherwork, and they collectively experienced a variety of disabilities, from sensory to motor to invisible disabilities. We share cross-cutting themes of their access hacks, how creative practice and access work become entangled, and their perspectives on how GAI should and should not fit into their workflows. In turn, we offer qualities of accessible creativity with responsible AI that can inform future research.
View details
With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser APIs
Harun Oz
Daniele Cono D’Elia
Abbas Acar
Riccardo Lazzeretti
Selcuk Uluagac
IEEE Security and Privacy (2024)
Preview abstract
This paper discusses security and privacy issues in modern Browser
APIs by categorizing them based on their functionality. With this study, we aim to
alert the community about these issues and motivate further research into
analyzing the security and privacy concerns within modern Browser APIs.
View details
Preview abstract
In this paper we study users' opinions about the privacy of their mobile health apps. We look at what they write in app reviews in the 'Health & Fitness' category on the Google Play store. We identified 2832 apps in this category (based on 1K minimum installs). Using NLP/LLM analyses, we find that 76% of these apps have at least some privacy reviews. In total this yields over 164,000 reviews about privacy, from over 150 countries and in 25 languages. Our analyses identifies top themes and offers an approximation of how widespread these issues are around the world. We show that the top 4 themes - Data Sharing and Exposure, Permission Requests, Location Tracking and Data Collection - are issues of concern in over 70 countries. Our automatically generated thematic summaries reveal interesting aspects that deserve further research around user suspicions (unneeded data collection), user requests (more fine-grained control over data collection and data access), as well as user behavior (uninstalling apps).
View details
The Case for Globalizing Fairness: A Mixed Methods Study on the Perceptions of Colonialism, AI and Health in Africa
Iskandar Haykel
Aisha Walcott-Bryant
Sanmi Koyejo
Preview abstract
With growing machine learning (ML) and large language model applications in healthcare, there have been calls for fairness in ML to understand and mitigate ethical concerns these systems may pose. Fairness has implications for health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study.
We conduct a scoping review to propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 625 general population study participants in 5 countries in Africa and 28 experts in ML, Health, and/or policy focussed on Africa to obtain feedback on the proposed attributes. We delve specifically into understanding the interplay between AI, health and colonialism.
Our findings demonstrate that among experts there is a general mistrust that technologies that are solely developed by former colonizers can benefit Africans, and that associated resource constraints due to pre-existing economic and infrastructure inequities can be linked to colonialism. General population survey responses found about an average of 40% of people associate an undercurrent of colonialism to AI and this was most dominant amongst participants from South Africa. However the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism.Colonial history, country of origin, National income level were specific axes of disparities that participants felt would cause an AI tool to be biased
This work serves as a basis for policy development around Artificial Intelligence for health in Africa and can be expanded to other regions.
View details
Multimodal Web Navigation with Instruction-Finetuned Foundation Models
Hiroki Furuta
Ofir Nachum
Yutaka Matsuo
Shane Gu
Izzeddin Gur
International Conference on Learning Representations (ICLR) (2024)
Preview abstract
Image-Text pretraining on a web-scale image caption dataset has become the default recipe for open vocabulary classification and retrieval models thanks to the success of CLIP and its variants. Several works have also used CLIP features for dense prediction tasks and have shown the emergence of open-set abilities. However, the contrastive objective only focuses on image and text alignment and does not incentivise image feature learning for dense prediction tasks. In this work, we propose the simple addition of local-to-global correspondence learning by self-distillation as an additional objective for contrastive pre-training to propose SILC. We show that distilling local image features from an EMA teacher model significantly improves model performance on tasks including classification, retrieval, and especially segmentation. We further show that SILC scales better with the same training duration compared to the baselines. Our improved SILC sets a new state-of-the-art for zero-shot classification, few shot classification, image retrieval, zero-shot segmentation, and open vocabulary segmentation.
View details
Optimization by Decoded Quantum Interferometry
Stephen Jordan
Noah Shutty
Mary Wootters
Alexander Schmidhuber
Robbie King
Sergei Isakov
arXiv:2408.08292 (2024)
Preview abstract
We introduce Decoded Quantum Interferometry (DQI), a quantum algorithm for reducing classical optimization problems to classical decoding problems by exploiting structure in the Fourier spectrum of the objective function. DQI reduces sparse max-XORSAT to decoding LDPC codes, which can be decoded using powerful classical algorithms such as belief propagation. As an initial benchmark, we compare DQI using belief propagation decoding against classical optimization via simulated annealing. In this setting we identify a family of max-XORSAT instances where DQI achieves a better approximation ratio on average than simulated annealing, although not better than specialized classical algorithms tailored to those instances. We also analyze a combinatorial optimization problem corresponding to finding polynomials that intersect the maximum number of points. There, DQI efficiently achieves a better approximation ratio than any polynomial-time classical algorithm known to us, thus realizing an apparent exponential quantum speedup. Finally, we show that the problem defined by Yamakawa and Zhandry in order to prove an exponential separation between quantum and classical query complexity is a special case of the optimization problem efficiently solved by DQI.
View details
Building Recommendation Systems using Lambda Architecture
Vipul Bharat Marlecha
Sreyashi Das
International Research Journal of Engineering and Technology (IRJET), Volume: 11 Issue: 05 | May 2024 (2024)
Preview abstract
This paper studies the recommendation systems that are typical to content discovery and personalized services like Netflix and Amazon. The study includes typical components of recommendation systems, what data and inputs are required to serve depending on the machine learning models used. We share how the recommendations leverage a mix of batch processing and streaming databases, and end with trends and potential future developments for recommendation systems
View details
Instant 3D Human Avatar Generation using Image Diffusion Models
Enric Corona
European Conference on Computer Vision (ECCV) (2024)
Preview abstract
We present AvatarPopUp, a method for fast, high quality 3D human avatar generation from different input modalities, such as images and text prompts and with control over the generated pose and shape. The common theme is the use of diffusion-based image generation networks that are specialized for each particular task, followed by a 3D lifting network. We purposefully decouple the generation from the 3D modeling which allow us to leverage powerful image synthesis priors, trained on billions of text-image pairs. We fine-tune latent diffusion networks with additional image conditioning for image generation and back-view prediction, and to support qualitatively different multiple 3D hypotheses. Our partial fine-tuning approach allows to adapt the networks for each task without inducing catastrophic forgetting. In our experiments, we demonstrate that our method produces accurate, high-quality 3D avatars with diverse appearance that respect the multimodal text, image, and body control signals. Our approach can produce a 3D model in as few as 2 seconds, a four orders of magnitude speedup w.r.t. the vast majority of existing methods, most of which solve only a subset of our tasks, and with fewer controls. AvatarPopUp enables applications that require the controlled 3D generation of human avatars at scale.
View details
RFC 9632 - Finding and Using Geofeed Data
RFC Editor, RFC Editor (2024), pp. 23
Preview abstract
This document specifies how to augment the Routing Policy Specification Language (RPSL) inetnum: class to refer specifically to geofeed comma-separated values (CSV) data files and describes an optional scheme that uses the Resource Public Key Infrastructure (RPKI) to authenticate the geofeed data files. This document obsoletes RFC 9092.
View details
UINav: A Practical Approach to Train On-Device Automation Agents
Wei Li
Fu-Lin Hsu
Will Bishop
Folawiyo Campbell-Ajala
2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024) - Industry Track
Preview abstract
Automation systems that can autonomously drive application user interfaces to complete user tasks are of great benefit, especially when users are situationally or permanently impaired. Prior automation systems do not produce generalizable models while AI-based automation agents work reliably only in simple, hand-crafted applications or incur high computation costs. We propose UINav, a demonstration-based approach to train automation agents that fit mobile devices, yet achieving high success rates with modest numbers of demonstrations. To reduce the demonstration overhead, UINav, uses a referee model that provides users with immediate feedback on tasks where the agent fails, and automatically augments human demonstrations to increase diversity in training data. Our evaluation shows that with only 10 demonstrations UINav, can achieve 70% accuracy, and that with enough demonstrations it can surpass 90% accuracy.
View details