Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10464 publications
    Preview abstract This paper presents a novel framework for optimizing capacitor selection in electronic design using multi-objective linear and non-linear constrained optimization techniques. We demonstrate the effectiveness of this approach in minimizing cost and board area while meeting critical performance requirements. View details
    Triply efficient shadow tomography
    Robbie King
    David Gosset
    PRX Quantum, 6 (2025), pp. 010336
    Preview abstract Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error. View details
    Mix&Slice
    Marco Rosa
    Encyclopedia of Cryptography, Security and Privacy, Springer Nature Switzerland (2025), pp. 1550-1555
    Preview abstract Mix&Slice is an encryption technique that enables efficient and robust access revocation on resources stored at external cloud providers. The technique makes use of a transformation that provides strong inter-dependency in the encrypted representation of a resource. To perform access revocation, it is then sufficient to re-encrypt a small portion of the resource to have guarantees that the resource (and any of its parts) will become unintelligible to those from whom access has been revoked. View details
    Fine-grained Measurement of Vehicle Delay Fairness
    Eliav Buchnik
    Tom Kalvari
    Jack Haddad
    Dan Karliner
    Danny Veikherman
    Ron Tsibulsky
    Shai Ferster
    Ori Rottenstreich
    2025
    Preview abstract Optimizing signal timing in traffic lights helps to improve traffic flow and reduce emissions through reducing delays. At intersections, vehicles from different movements observe different delays impacted by the traffic light plan. This paper analyzes delay fairness among various vehicles at intersections. We refer to three cities: Rio de Janeiro, Hamburg and Seattle with a total number of over 5100 intersections. We present an intuitive methodology to compute delay fairness based on Gini index, a common fairness measure in economics. We evaluate the fairness based on real traffic data and provide insights on the relationship of fairness with day hours and traffic demand. We also examine real changes in traffic light plans that occurred in practice to check whether improving delay is often aligned with increasing fairness. View details
    Preview abstract The rapid emergence of generative AI models and AI powered systems has surfaced a variety of concerns around responsibility, safety, and inclusion. Some of these concerns address specific vulnerable communities, including people with disabilities. At the same time, these systems may introduce harms upon disabled users that do not fit neatly into existing accessibility classifications, and may not be addressed by current accessibility practices. In this paper, we investigate how stakeholders across a variety of job types are encountering and addressing potentially negative impacts of AI on users with disabilities. Through interviews with 25 practitioners, we identify emerging challenges related to AI’s impact on disabled users, systemic obstacles that contribute to problems, and effective strategies for impacting change. Based on these findings, we offer suggestions for improving existing processes for creating AI-powered systems and supporting practitioners in developing skills to address these emerging challenges. View details
    Preview abstract Creativity in software development is frequently overlooked, specifically in the design of developer tools which often focus on productivity. This is likely because creativity is not always seen as a goal in software engineering; in part, this can be explained by the unique way in which software engineers relate to creativity as centered around reusability rather than novelty. However, creativity is a critical aspect of software engineering, and importantly, there is a clear possibility for AI to impact creativity in both positive or negative ways. In this article, we explore the differences in goals for designing AI tools for productivity compared to creativity and propose strategies to elevate creativity in the software engineering workflow. Specifically, we apply seamful design to AI powered software development to consider the role of seamfulness in software development workflows as a way to support creativity. View details
    Preview abstract In the differentially private partition selection problem (a.k.a. private set union, private key discovery), users hold subsets of items from an unbounded universe. The goal is to output as many items as possible from the union of the users' sets while maintaining user-level differential privacy. Solutions to this problem are a core building block for many privacy-preserving ML applications including vocabulary extraction in a private corpus, computing statistics over categorical data and learning embeddings over user-provided items. We propose an algorithm for this problem, MaxAdaptiveDegree(MAD), which adaptively reroutes weight from items with weight far above the threshold needed for privacy to items with smaller weight, thereby increasing the probability that less frequent items are output. Our algorithm can be efficiently implemented in massively parallel computation systems allowing scalability to very large datasets. We prove that our algorithm stochastically dominates the standard parallel algorithm for this problem. We also develop a two-round version of our algorithm, MAD2R, where results of the computation in the first round are used to bias the weighting in the second round to maximize the number of items output. In experiments, our algorithms provide the best results across the board among parallel algorithms and scale to datasets with hundreds of billions of items, up to three orders of magnitude larger than those analyzed by prior sequential algorithms. View details
    Data Quality Issues in Multilingual Speech Datasets: The Need for Sociolinguistic Awareness and Proactive Language Planning
    Mingfei Lau
    Allen Chen
    Yeming Fang
    Tingting Xu
    Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics (ACL), Vienna, Austria (2025), 7466–7492
    Preview
    The ASPLOS 2025 / EuroSys 2025 Contest on Intra-Operator Parallelism for Distributed Deep Learning
    Pratik Fegade
    Proceedings of the 30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (2025), pp. 5-17
    Preview abstract A chief enabler of large-scale deep learning is the distribution of computation across multiple interconnected hardware accelerators. In order to unlock the maximum possible performance, a compiler must first select a reasonable strategy to parallelize a model's operations. Since neural network architectures admit multiple flavors of parallelism, determining the proper strategy for each instruction is a critical (albeit non-trivial) task. To solicit new ideas toward solving this challenging combinatorial optimization problem, we organized the ASPLOS 2025 / EuroSys 2025 Contest on Intra-Operator Parallelism for Distributed Deep Learning, a multi-month competition focused on advancing the state-of-the-art for model partitioning algorithms. In this paper, we offer a retrospective of this event, including the basic problem formulation, key challenges & opportunities, our new benchmark suite, and the quality of submissions received. View details
    Preview abstract We investigate Learning from Label Proportions (LLP), a partial information setting where examples in a training set are grouped into bags, and only aggregate label values in each bag are available. Despite the partial observability, the goal is still to achieve small regret at the level of individual examples. We give results on the sample complexity of LLP under square loss, showing that our sample complexity is essentially optimal. From an algorithmic viewpoint, we rely on carefully designed variants of Empirical Risk Minimization, and Stochastic Gradient Descent algorithms, combined with ad hoc variance reduction techniques. On one hand, our theoretical results improve in important ways on the existing literature on LLP, specifically in the way the sample complexity depends on the bag size. On the other hand, we validate our algorithmic solutions on several datasets, demonstrating improved empirical performance (better accuracy for less samples) against recent baselines. View details
    Validation of a Deep Learning Model for Diabetic Retinopathy on Patients with Young-Onset Diabetes
    Tony Tan-Torres
    Pradeep Praveen
    Divleen Jeji
    Arthur Brant
    Xiang Yin
    Lu Yang
    Tayyeba Ali
    Ilana Traynis
    Dushyantsinh Jadeja
    Rajroshan Sawhney
    Sunny Virmani
    Pradeep Venkatesh
    Nikhil Tandon
    Ophthalmology and Therapy (2025)
    Preview abstract Introduction While many deep learning systems (DLSs) for diabetic retinopathy (DR) have been developed and validated on cohorts with an average age of 50s or older, fewer studies have examined younger individuals. This study aimed to understand DLS performance for younger individuals, who tend to display anatomic differences, such as prominent retinal sheen. This sheen can be mistaken for exudates or cotton wool spots, and potentially confound DLSs. Methods This was a prospective cross-sectional cohort study in a “Diabetes of young” clinic in India, enrolling 321 individuals between ages 18 and 45 (98.8% with type 1 diabetes). Participants had fundus photographs taken and the photos were adjudicated by experienced graders to obtain reference DR grades. We defined a younger cohort (age 18–25) and an older cohort (age 26–45) and examined differences in DLS performance between the two cohorts. The main outcome measures were sensitivity and specificity for DR. Results Eye-level sensitivity for moderate-or-worse DR was 97.6% [95% confidence interval (CI) 91.2, 98.2] for the younger cohort and 94.0% [88.8, 98.1] for the older cohort (p = 0.418 for difference). The specificity for moderate-or-worse DR significantly differed between the younger and older cohorts, 97.9% [95.9, 99.3] and 92.1% [87.6, 96.0], respectively (p = 0.008). Similar trends were observed for diabetic macular edema (DME); sensitivity was 79.0% [57.9, 93.6] for the younger cohort and 77.5% [60.8, 90.6] for the older cohort (p = 0.893), whereas specificity was 97.0% [94.5, 99.0] and 92.0% [88.2, 95.5] (p = 0.018). Retinal sheen presence (94% of images) was associated with DME presence (p < 0.0001). Image review suggested that sheen presence confounded reference DME status, increasing noise in the labels and depressing measured sensitivity. The gradability rate for both DR and DME was near-perfect (99% for both). Conclusion DLS-based DR screening performed well in younger individuals aged 18–25, with comparable sensitivity and higher specificity compared to individuals aged 26–45. Sheen presence in this cohort made identification of DME difficult for graders and depressed measured DLS sensitivity; additional studies incorporating optical coherence tomography may improve accuracy of measuring DLS DME sensitivity. View details
    A Recipe for Improving Remote Sensing Zero Shot Generalization
    Aviad Barzilai
    Yotam Gigi
    Vered Silverman
    Yehonathan Refael
    Bolous Jaber
    Amr Helmy
    3rd ML4RS Workshop at ICLR 2025
    Preview abstract Foundation models have had a significant impact across various AI applications, enabling applications for use cases that were previously impossible. Visual language models (VLMs), in particular, have outperformed other techniques in many tasks. In remote sensing (RS), foundation models have shown improvements across various applications. However, unlike other fields, the use of VLMs with large-scale remote sensing image-text datasets remains limited. In this work, we first introduce two novel image-caption datasets for training of remote sensing foundation models. The first dataset pairs aerial and satellite imagery, aligned with Google-Maps data, with high-quality captions generated using Gemini. The second utilizes public web images and their corresponding alt-text, filtered for only remote sensing domain, resulting in a highly diverse dataset. We show that using these datasets to pre-train the Mammut [], a VLM architecture, results in state-of-the-art generalization performance in a zero-shot classification and cross-modal retrieval on well-known public benchmarks. Secondly, we leverage this newly pre-trained VLM to generate inference attention maps for a novel class query (i.e., a class unseen during training). We subsequently propose an iterative self-supervised fine-tuning approach where samples aligned with these attention maps are iteratively pseudo-labeled and utilized for model training. View details
    Wave: Offloading Resource Management to SmartNIC Cores
    Jack Humphries
    Neel Natu
    Kostis Kaffes
    Hank Levy
    Christos Kozyrakis
    2025
    Preview abstract SmartNICs are increasingly deployed in datacenters to offload tasks from server CPUs, improving the efficiency and flexibility of datacenter security, networking and storage. Optimizing cloud server efficiency in this way is critically important to ensure that virtually all server resources are available to paying customers. Userspace system software, specifically, decision-making tasks performed by various operating system subsystems, is particularly well suited for execution on mid-tier SmartNIC ARM cores. To this end, we introduce Wave, a framework for offloading userspace system software to processes/agents running on the SmartNIC. Wave uses Linux userspace systems to better align system functionality with SmartNIC capabilities. It also introduces a new host-SmartNIC communication API that enables offloading of even μs-scale system software. To evaluate Wave, we offloaded preexisting userspace system software including kernel thread scheduling, memory management, and an RPC stack to SmartNIC ARM cores, which showed a performance degradation of 1.1%-7.4% in an apples-to-apples comparison with on-host implementations. Wave recovered host resources consumed by on-host system software for memory management (saving 16 host cores), RPCs (saving 8 host cores), and virtual machines (an 11.2% performance improvement). Wave highlights the potential for rethinking system software placement in modern datacenters, unlocking new opportunities for efficiency and scalability. View details
    A Reduction from Multi-Parameter to Single-Parameter Bayesian Contract Design
    Matteo Castiglioni
    Junjie Chen
    Minming Li
    Haifeng Xu
    SODA 2025 (to appear)
    Preview abstract The problem of contract design addresses the challenge of moral hazard in principle-agent setups. The agent exerts costly efforts that produce a random outcome with an associated reward for the principal. Moral hazard refers to the tension that the principal cannot observe the agent’s effort level hence needs to incentivize the agent only through rewarding the realized effort outcome, i.e., the contract. Bayesian contract design studies the principal’s design problem of an optimal contract when facing an unknown agent characterized by a private Bayesian type. In its most general form, the agent’s type is inherently “multi-parameter” and can arbitrarily affect both the agent’s productivity and effort costs. In contrast, a natural single-parameter setting of much recent interest simplifies the agent’s type to a single value that describes the agent’s cost per unit of effort, whereas agents’ efforts are assumed to be equally productive. The main result of this paper is an almost approximation-preserving polynomial-time reduction from the most general multi-parameter Bayesian contract design (BCD) to single-parameter BCD. That is, for any multi-parameter BCD instance I^M, we construct a single-parameter instance I^S such that any β-approximate contract (resp. menu of contracts) of I^S can in turn be converted to a (β − ϵ)-approximate contract (resp. menu of contracts) of I^M. The reduction is in time polynomial in the input size and log(1/ϵ); moreover, when β = 1 (i.e., the given single-parameter solution is exactly optimal), the dependence on 1/ϵ can be removed, leading to a polynomial-time exact reduction. This efficient reduction is somewhat surprising because in the closely related problem of Bayesian mechanism design, a polynomial-time reduction from multi-parameter to single-parameter setting is believed to not exist. Our result demonstrates the intrinsic difficulty of addressing moral hazard in Bayesian contract design, regardless of being single-parameter or multi-parameter. As byproducts, our reduction answers two open questions in recent literature of algorithmic contract design: (a) it implies that optimal contract design in single-parameter BCD is not in APX unless P=NP even when the agent’s type distribution is regular, answering the open question of [3] in the negative; (b) it implies that the principal’s (order-wise) tight utility gap between using a menu of contracts and a single contract is Θ(n) where n is the number of actions, answering the major open question of [27] for the single-parameter case. View details
    Preview abstract This paper presents SYMBIOSIS, an AI-powered framework to make Systems Thinking accessible for addressing societal challenges and unlock paths for leveraging systems thinking framework to improve AI systems. The platform establishes a centralized, open-source repository of systems thinking/system dynamics models categorized by Sustainable Development Goals (SDGs) and societal topics using topic modeling and classification techniques. Systems Thinking resources, though critical for articulating causal theories in complex problem spaces, are often locked behind specialized tools and intricate notations, creating high barriers to entry. To address this, we developed a generative co-pilot that translates complex systems representations - such as causal loops and stock-flow diagrams - into natural language (and vice-versa), allowing users to explore and build models without extensive technical training. Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to misaligned causal theories and reduced intervention effectiveness. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, we aim to serve as a foundational step to unlock future research into Responsible and society-centered AI that better integrates societal context leveraging systems thinking framework and models. Our work underscores the need for ongoing research into AI's capacity essential system dynamics such as feedback processes and time delays, paving the way for more socially attuned, effective AI systems. View details