Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10961 publications
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Preview abstract
Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL?
In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy.
We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data.
We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL.
Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL.
In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL.
View details
Preview abstract
How many T gates are needed to approximate an arbitrary n-qubit quantum state to within
a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the
optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary
diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of
single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary
single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to
approximate just one single-qubit unitary.
View details
CrossCheck: Input Validation for WAN Control Systems
Rishabh Iyer
Isaac Keslassy
Sylvia Ratnasamy
Networked Systems Design and Implementation (NSDI) (2026) (to appear)
Preview abstract
We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages.
Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data).
View details
Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation
Lin Chen
Aditya Menon
Forty-second International Conference on Machine Learning (2025)
Preview abstract
Bipartite ranking is a fundamental supervised learning problem, with the goal of learning a ranking over instances with maximal area under the ROC curve (AUC) against a single binary target label. However, one may often observe multiple binary target labels, e.g., from distinct human annotators. How can one synthesize such labels into a single coherent ranking? In this work, we formally analyze two approaches to this problem—loss aggregation and label aggregation—by characterizing their Bayes-optimal solutions. We show that while both approaches can yield Pareto-optimal solutions, loss aggregation can exhibit label dictatorship: one can inadvertently (and undesirably) favor one label over others. This suggests that label aggregation can be preferable to loss aggregation, which we empirically verify.
View details
Not Like Us, Hunty: Measuring Perceptions and Behavioral Effects of Minoritized Anthropomorphic Cues in LLMs
Jeffrey Basoah
Daniel Chechelnitsky
Tao Long
Katharina Reinecke
Chrysoula Zerva
Kaitlyn Zhou
Maarten Sap
Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency, ACM (2025), pp. 710-745
Preview abstract
As large language models (LLMs) increasingly adapt and personalize to diverse sets of users, there is an increased risk of systems appropriating sociolects, i.e., language styles or dialects that are associated with specific minoritized lived experiences (e.g., African American
English, Queer slang). In this work, we examine whether sociolect usage by a LLM agent affects user reliance on its outputs and user perception (satisfaction, frustration, trust, and social presence). We designed and conducted user studies where 498 African American English (AAE) speakers and 487 Queer slang speakers performed a set of question-answering tasks with LLM-based suggestions in either standard American English (SAE) or their self-identified sociolect.
Our findings showed that sociolect usage by LLMs influenced both reliance and perceptions, though in some surprising ways. Results suggest that both AAE and Queer slang speakers relied more on the SAELM, and had more positive perceptions of the SAELM. Yet, only Queer slang speakers felt more social presence from the QSLM over the SAE one, whereas only AAE speakers preferred and trusted the SAELM over the AAE one. These findings emphasize the need to test for behavioral outcomes rather than simply assume that personalization would lead to a better and safer reliance outcome. They also highlight the nuanced dynamics of minoritized language in machine interactions, underscoring the need for LLMs to be carefully designed to respect cultural and linguistic boundaries while fostering genuine user engagement and trust.
View details
Preview abstract
The dominant paradigm in image retrieval systems today is to search large databases using global image features, and re-rank those initial results with local image feature matching techniques.
This design, dubbed \emph{global-to-local}, stems from the computational cost of local matching approaches, which can only be afforded for a small number of retrieved images.
However, emerging efficient local feature search approaches have opened up new possibilities, in particular enabling detailed retrieval at large scale, to find partial matches which are often missed by global feature search.
In parallel, global feature-based re-ranking has shown promising results with high computational efficiency.
In this work, we leverage these building blocks to introduce a \emph{local-to-global} retrieval paradigm, where efficient local feature search meets effective global feature re-ranking.
Critically, we propose a re-ranking method where global features are computed on-the-fly, based on the local feature retrieval similarities.
Such re-ranking-only global features, dubbed \emph{similarity embeddings}, leverage multidimensional scaling techniques to create embeddings which respect the local similarities obtained during search, enabling a significant re-ranking boost.
Experimentally, we demonstrate unprecedented retrieval performance on the Revisited Oxford and Paris datasets, setting new state-of-the-art results.
View details
On the Differential Privacy and Interactivity of Privacy Sandbox Reports
Charlie Harrison
Pritish Kamath
Alexander Knop
Ethan Leeman
Vikas Sahu
PETS (2025)
Preview abstract
The Privacy Sandbox initiative from Google includes APIs for enabling privacy-preserving advertising functionalities as part of the effort to limit third-party cookies. In particular, the Private Aggregation API (PAA) and the Attribution Reporting API (ARA) can be used for ad measurement while providing different guardrails for safeguarding user privacy, including a framework for satisfying differential privacy (DP). In this work, we provide an abstract model for analyzing the privacy of these APIs and show that they satisfy a formal DP guarantee under certain assumptions. Our analysis handles the case where both the queries and database can change interactively based on previous responses from the API.
View details
Synthetic Text Generation for Training Large Language Models (LLMs) via Gradient Matching
Dang Nguyen
Zeman Li
Meisam Razaviyayn
Baharan Mirzasoleiman
International Conference on Machine Learning (ICML) (2025)
Preview abstract
Synthetic data has the potential to improve the performance, training efficiency, and privacy of
real training examples. Nevertheless, existing approaches for synthetic text generation are mostly heuristics and cannot generate human-readable text without compromising the privacy of real data, or provide performance guarantees for training Large Language Models (LLMs). In this work, we propose the first theoretically rigorous approach for generating synthetic human-readable text that provides convergence, performance, and privacy guarantees for fine-tuning LLMs on a target task. To do so, we leverage Alternating Direction Method of Multipliers (ADMM) that iteratively optimizes the embeddings of synthetic examples to match the noisy gradient of the target training or validation data, and maps them to a sequence of text tokens with low perplexity. In doing so, the generated synthetic text guarantees convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data and preserves their privacy. Experiments on various classification tasks confirm the effectiveness of our proposed approach. Our code is available at https://github.com/BigML-CS-UCLA/GRADMM.
View details
Preview abstract
Several resource allocation settings involve agents with unequal entitlements represented by weights. We analyze weighted fair division from an asymptotic perspective: if m items are divided among n agents whose utilities are independently sampled from a probability distribution, when is it likely that a fair allocation exist? We show that if the ratio between the weights is bounded, a weighted envy-free allocation exists with high probability provided that m = Ω(n log n/ log log n), generalizing a prior unweighted result. For weighted proportionality, we establish a sharp threshold of m = n/(1 − μ) for the transition from non-existence to existence, where μ ∈ (0, 1) denotes the mean of the distribution. In addition, we prove that for two agents, a weighted envy-free (and weighted proportional) allocation is likely to exist if m = ω(√r), where r denotes the ratio between the two weights.
View details
Preview abstract
Text-to-image generative models have demonstrated great performance in generating realistic images. These generations are assumed to reflect a deep understanding of visual scenes. One interesting question is whether these models can possess a zero/few shot generalization capabilities that are known from humans. For example, a human can see an example of a new object and a word associated with this object, use their knowledge in a highly general way to recognize or imagine this novel object in a completely different setting or context. In this work, we are interested in testing whether text-image models can possess this same capability. In this work, we would like to test the hypothesis that text-to-image models may learn familiar objects better than novel objects. We use prompt tuning methods to learn those novel concepts while keeping the text-image models fixed. We prompt tune the model as well to learn familiar concepts, and evaluate the generalization ability for novel objects compared to familiar objects by running generation in different contexts/environments. In addition, instead of initializing the embedding vectors with some similar concepts, we use randomly initialized embedding vectors for both familiar and novel objects. Our human-survey evaluation results demonstrates that in some settings text-image models learn familiar objects better than novel objects.
View details
Envisioning Aboriginal and Torres Strait Islander AI Futures
Journal of Global Indigeneity (2025)
Preview abstract
In January 2025, over forty Aboriginal and Torres Strait Islander researchers, practitioners, community members, and allies, gathered at the Centre for Global Indigenous Futures at the Wallumattagal Campus of Macquarie University in Sydney to envisage Aboriginal and Torres Strait Islander AI futures. This publication reports on attendees' vision for the future of AI for Aboriginal and Torres Strait Islander people.
View details
Preview abstract
Bandit Convex Optimization is a fundamental class of sequential decision-making problems, where the learner selects actions from a continuous domain and observes a loss (but not its gradient) at only one point per round. We study this problem in non-stationary environments, and aim to minimize the regret under three standard measures of non-stationarity: the number of switches S in the comparator sequence, the total variation Delta of the loss functions, and the path-length P of the comparator sequence. We propose a polynomial-time algorithm, Tilted Exponentially Weighted Average with Sleeping Experts (TEWA-SE), which adapts the sleeping experts framework from online convex optimization to the bandit setting. For strongly convex losses, we prove that TEWA-SE is minimax-optimal with respect to known S and Delta by establishing matching upper and lower bounds. By equipping TEWA-SE with the Bandit-over-Bandit framework, we extend our analysis to environments with unknown non-stationarity measures. For general convex losses, we introduce a second algorithm, clipped Exploration by Optimization (cExO), based on exponential weights over a discretized action space. While not polynomial-time computable, this method achieves minimax-optimal regret with respect to known S and Delta, and improves on the best existing bounds with respect to P.
View details
Enhancing Remote Sensing Representations through Mixed-Modality Masked Autoencoding
Ori Linial
Yochai Blau
Nadav Sherman
Yotam Gigi
Wojciech Sirko
Proceedings of the Winter Conference on Applications of Computer Vision (WACV) Workshops (2025), pp. 507-516
Preview abstract
This paper presents an innovative approach to pre-training models for remote sensing by integrating optical and radar data from Sentinel-2 and Sentinel-1 satellites. Using a novel variation on the masked autoencoder (MAE) framework, our model incorporates a dual-task setup: reconstructing masked Sentinel-2 images and predicting corresponding Sentinel-1 images. This multi-task design enables the encoder to capture both spectral and structural features across diverse environmental conditions. Additionally, we introduce a "mixing" strategy in the pretraining phase, combining patches from both image sources, which mitigates spatial misalignment errors and enhances model robustness. Evaluation on segmentation and classification tasks, including Sen1Floods11 and BigEarthNet, demonstrates significant improvements in adaptability and generalizability across varied downstream remote sensing applications. Our findings highlight the advantages of leveraging complementary modalities for more resilient and versatile land cover analysis.
View details