Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10473 publications
Generative Quantum Advantage for Classical and Quantum Problems
Robert Huang
Michael Broughton
Norhan Eassa
arXiv:2509.09033 (2025)
Preview abstract
Recent breakthroughs in generative machine learning, powered by massive computational resources, have demonstrated unprecedented human-like capabilities. While beyond-classical quantum experiments can generate samples from classically intractable distributions, their complexity has thwarted all efforts toward efficient learning. This challenge has hindered demonstrations of generative quantum advantage: the ability of quantum computers to learn and generate desired outputs substantially better than classical computers. We resolve this challenge by introducing families of generative quantum models that are hard to simulate classically, are efficiently trainable, exhibit no barren plateaus or proliferating local minima, and can learn to generate distributions beyond the reach of classical computers. Using a 68-qubit superconducting quantum processor, we demonstrate these capabilities in two scenarios: learning classically intractable probability distributions and learning quantum circuits for accelerated physical simulation. Our results establish that both learning and sampling can be performed efficiently in the beyond-classical regime, opening new possibilities for quantum-enhanced generative models with provable advantage.
View details
Preview abstract
We introduce efficient differentially private (DP) algorithms for several linear algebraic tasks, including solving linear equalities over arbitrary fields, linear inequalities over the reals, and computing affine spans and convex hulls. As an application, we obtain efficient DP algorithms for learning halfspaces and affine subspaces. Our algorithms addressing equalities are strongly polynomial, whereas those addressing inequalities are weakly polynomial. Furthermore, this distinction is inevitable: no DP algorithm for linear programming can be strongly polynomial-time efficient.
View details
Data-Driven Mechanism Design: Jointly Eliciting Preferences and Information
Dirk Bergemann
Marek Bojko
Paul Duetting
Haifeng Xu
EC '25: Proceedings of the 26th ACM Conference on Economics and Computation (2025), pp. 507
Preview abstract
We study mechanism design when agents have private preferences and private information about a common payoff-relevant state. We show that standard message-driven mechanisms cannot implement socially efficient allocations when agents have multidimensional types, even under favorable conditions.
To overcome this limitation, we propose data-driven mechanisms that leverage additional post-allocation information, modeled as an estimator of the payoff-relevant state. Our data-driven mechanisms extend the classic Vickrey-Clarke-Groves class. We show that they achieve exact implementation in posterior equilibrium when the state is either fully revealed or the utility is affine in an unbiased estimator. We also show that they achieve approximate implementation with a consistent estimator, converging to exact implementation as the estimator converges, and present bounds on the convergence rate.
We demonstrate applications to digital advertising auctions and large language model (LLM)-based mechanisms, where user engagement naturally reveals relevant information.
View details
Toward Sensor-In-the-Loop LLM Agent: Benchmarks and Implications
Zhiwei Ren
Junbo Li
Minjia Zhang
Di Wang
Longfei Shangguan
SenSys 2025 - The 23rd ACM Conference on Embedded Networked Sensor Systems (2025)
Preview abstract
This paper advocates for sensor-informed personal agents that can take advantage of sensor hints on wearables to enhance the personal agent's response. We demonstrate that such a sensor-in-the-loop design paradigm can be easily integrated into existing LLM agents by building a prototype named WellMax based on existing well-developed techniques such as structured prompt tuning and few-shot prompting. The head-to-head comparison with a non-sensor-informed agent across five use scenarios demonstrates that this sensor-in-the-loop design can effectively improve users' needs and their overall experience. The deep-dive into agents' replies and participants' feedback further reveals that sensor-in-the-loop agents not only provide more contextually relevant responses but also exhibit a greater understanding of user priorities and situational nuances. We further conduct two case studies to examine the potential pitfalls and distill key insights from this sensor-in-the-loop agent. We believe this work sets the stage for more intelligent, empathetic, and effective interactions in future AI-driven personal assistants.
View details
Wave: Offloading Resource Management to SmartNIC Cores
Jack Humphries
Neel Natu
Kostis Kaffes
Hank Levy
Christos Kozyrakis
2025
Preview abstract
SmartNICs are increasingly deployed in datacenters to offload tasks from server CPUs, improving the efficiency and flexibility of datacenter security, networking and storage. Optimizing cloud server efficiency in this way is critically important to ensure that virtually all server resources are available to paying customers. Userspace system software, specifically, decision-making tasks performed by various operating system subsystems, is particularly well suited for execution on mid-tier SmartNIC ARM cores. To this end, we introduce Wave, a framework for offloading userspace system software to processes/agents running on the SmartNIC. Wave uses Linux userspace systems to better align system functionality with SmartNIC capabilities. It also introduces a new host-SmartNIC communication API that enables offloading of even μs-scale system software. To evaluate Wave, we offloaded preexisting userspace system software including kernel thread scheduling, memory management, and an RPC stack to SmartNIC ARM cores, which showed a performance degradation of 1.1%-7.4% in an apples-to-apples comparison with on-host implementations. Wave recovered host resources consumed by on-host system software for memory management (saving 16 host cores), RPCs (saving 8 host cores), and virtual machines (an 11.2% performance improvement). Wave highlights the potential for rethinking system software placement in modern datacenters, unlocking new opportunities for efficiency and scalability.
View details
Beyond Digital Literacy: Building Youth Digital Resilience Through Existing “Information Sensibility” Practices
Mia Hassoun
Ian Beacock
Todd Carmody
Patrick Gage Kelley
Beth Goldberg
Devika Kumar
Laura Murray
Rebekah Park
Behzad Sarmadi
Social Sciences Journal, 14(4) (2025)
Preview abstract
Youth media consumption and disordered eating practices have historically been subjects of moral panics, often resulting in protective, deficit-based interventions like content removal. We argue for interventions which instead equip youth to evaluate and manage risks in their online environments, building upon their existing “information sensibility” practices. Drawing upon ethnographic research and intervention testing with 77 participants in the US and India, we analyze how youth (aged 13–26), including those with diverse political perspectives and those recovering from disordered eating (DE), engage with online news and health information. Participants generally algorithmically encountered (rather than searched for) information online, and their engagement was shaped more by social motivations—like belonging—than truth seeking. Participants interpreted online information collaboratively, relying on social cues and peer validation within their online communities. They demonstrated preference for personal testimonies and relatable sources, particularly those with similar social identities. We propose resilience-building interventions that build upon these youth online information practices by: (1) leveraging peer networks, promoting critical information engagement through collaborative learning and peer-to-peer support within online communities; (2) developing social media sensibility, equipping youth to critically evaluate information sources in situ; (3) providing pathways offline, connecting youth to desired in-person communities; and (4) encouraging probabilistic thinking.
View details
Preview abstract
Several systems rely on traceroute to track a large number of Internet paths as they change over time. Monitoring systems perform this task by remapping paths periodically or whenever a change is detected. This paper shows that such complete remapping is inefficient, because most path changes are localized to a few hops of a path. We develop RemapRoute, a tool to remap a path locally given the previously known path and a change point. RemapRoute sends targeted probes to locate and remap the often few hops that have changed. Our evaluation with trace-driven simulations and in a real deployment shows that local remapping reduces the average number of probes issued during remapping by 63% and 79%, respectively, when compared with complete remapping. At the same time, our results show that local remapping has little impact on the accuracy of inferred paths.
View details
Permission Rationales in the Web Ecosystem: An Exploration of Rationale Text and Design Patterns
Yusra Elbitar
Soheil Khodayari
Marian Harbach
Gianluca De Stefano
Balazs Engedy
Giancarlo Pellegrino
Sven Bugiel
CHI 2025, ACM
Preview abstract
Modern web applications rely on features like camera and geolocation for personalized experiences, requiring user permission via browser prompts. To explain these requests, applications provide rationales—contextual information on why permissions are needed. Despite their importance, little is known about how rationales appear on the web or their influence on user decisions.
This paper presents the first large-scale study of how the web ecosystem handles permission rationales, covering three areas: (i) identifying webpages that use permissions, (ii) detecting and classifying permission rationales, and (iii) analyzing their attributes to understand their impact on user decisions. We examined over 770K webpages from Chrome telemetry, finding 3.6K unique rationale texts and 749 rationale UIs across 85K pages. We extracted key rationale attributes and assessed their effect on user behavior by cross-referencing them with Chrome telemetry data. Our findings reveal nine key insights, providing the first evidence of how different rationales affect user decisions.
View details
Preview abstract
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time visual in-context tuning (VICT), a method that can learn adaptive VICL models on the fly with a single test sample. Specifically, We flip the role between task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on seven representative vision tasks with 15 corruptions demonstrate that our VICT can improve the generalizability of VICL to unseen new domains
View details
Preview abstract
Measuring software development can help drive impactful change. However, it’s a complex task, and getting started can be daunting as it involves understanding what you should measure, and determining what you can measure. This article provides a guide to selecting a framework that aligns with organizational measurement strategy.
View details
Mitigating Clinician Information Overload: Generative AI for Integrated EHR and RPM Data Analysis
Shashank Kapoor
Aman Raj
IEEE Compsac 2025 (2025)
Preview abstract
Generative AI (GenAI), particularly Large Language Models (LLMs), offer powerful capabilities for interpreting the complex data landscape in healthcare. In this paper, we present a comprehensive overview of the capabilities, requirements and applications of GenAI for deriving clinical insights and improving clinical efficiency. We first provide some background on the forms and sources of patient data, namely real-time Remote Patient Monitoring (RPM) streams and traditional Electronic Health Records (EHR). The sheer volume and heterogeneity of this combined data present significant challenges to clinicians and contribute to information overload.
In addition, we explore the potential of LLM-powered applications for improving clinical efficiency. These applications can enhance navigation of longitudinal patient data and provide actionable clinical decision support through natural language dialogue. We discuss the opportunities this presents for streamlining clinician workflows and personalizing care, alongside critical challenges such as data integration complexity, ensuring data quality and RPM data reliability, maintaining patient privacy, validating AI outputs for clinical safety, mitigating bias, and ensuring clinical acceptance. We believe this work represents the first summarization of GenAI techniques for managing clinician data overload due to combined RPM / EHR data complexities.
View details
Closing the AI generalisation gap by adjusting for dermatology condition distribution differences across clinical settings
Rajeev Rikhye
Aaron Loh
Grace Hong
Margaret Ann Smith
Vijaytha Muralidharan
Doris Wong
Michelle Phung
Nicolas Betancourt
Bradley Fong
Rachna Sahasrabudhe
Khoban Nasim
Alec Eschholz
Basil Mustafa
Jan Freyberg
Terry Spitz
Kat Chou
Peggy Bui
Justin Ko
Steven Lin
The Lancet eBioMedicine (2025)
Preview abstract
Background: Generalisation of artificial intelligence (AI) models to a new setting is challenging. In this study, we seek to understand the robustness of a dermatology (AI) model and whether it generalises from telemedicine cases to a new setting including both patient-submitted photographs (“PAT”) and clinician-taken photographs in-clinic (“CLIN”).
Methods: A retrospective cohort study involving 2500 cases previously unseen by the AI model, including both PAT and CLIN cases, from 22 clinics in the San Francisco Bay Area, spanning November 2015 to January 2021. The primary outcome measure for the AI model and dermatologists was the top-3 accuracy, defined as whether their top 3 differential diagnoses contained the top reference diagnosis from a panel of dermatologists per case.
Findings: The AI performed similarly between PAT and CLIN images (74% top-3 accuracy in CLIN vs. 71% in PAT), however, dermatologists were more accurate in PAT images (79% in CLIN vs. 87% in PAT). We demonstrate that demographic factors were not associated with AI or dermatologist errors; instead several categories of conditions were associated with AI model errors (p < 0.05). Resampling CLIN and PAT to match skin condition distributions to the AI development dataset reduced the observed differences (AI: 84% CLIN vs. 79% PAT; dermatologists: 77% CLIN vs. 89% PAT). We demonstrate a series of steps to close the generalisation gap, requiring progressively more information about the new dataset, ranging from the condition distribution to additional training data for rarer conditions. When using additional training data and testing on the dataset without resampling to match AI development, we observed comparable performance from end-to-end AI model fine tuning (85% in CLIN vs. 83% in PAT) vs. fine tuning solely the classification layer on top of a frozen embedding model (86% in CLIN vs. 84% in PAT).
Interpretation: AI algorithms can be efficiently adapted to new settings without additional training data by recalibrating the existing model, or with targeted data acquisition for rarer conditions and retraining just the final layer.
View details
Explainable Artificial Intelligence Techniques for Software Development Lifecycle: A phase-specific survey
Shashank Kapoor
Aman Raj
IEEE Compsac (2025)
Preview abstract
Artificial Intelligence (AI) is rapidly expanding and integrating more into daily life to automate tasks, guide decision-making and enhance efficiency. However, complex AI models, which make decisions without providing clear explanations (known as the "black-box problem"), currently restrict trust and widespread adoption of AI.
Explainable Artificial intelligence (XAI) has emerged to address the black-box problem of making AI systems more interpretable and transparent so stakeholders can trust, verify, and act upon AI-based outcomes. Researcher have come up with various techniques to foster XAI in Software Development Lifecycle. However, there are gaps in the application of XAI in Software Engineering phases. Literature shows that 68% of XAI in Software Engineering research focused on maintenance as opposed to 8% on software management and requirements [7].
In this paper we present a comprehensive survey of the applications of XAI methods (e.g., concept-based explanations, LIME/SHAP, rule extraction, attention mechanisms, counterfactual explanations, example-based explanations) to the different phases of Software Development Lifecycles (SDLC) mainly requirements elicitation, design and development, testing and deployment, and evolution.
To the best of our knowledge, this paper presents the first comprehensive survey of XAI techniques for every phase of the Software Development Life Cycle (SDLC). In doing so, we aim to promote explainable AI in Software Engineering and facilitate the use of complex AI models in AI-driven software development.
View details
Dynamical-generative downscaling of climate model ensembles
Tapio Schneider
John Anderson
Proceedings of the National Academy of Sciences, 122 (2025), e2420288122
Preview abstract
Regional high-resolution climate projections are crucial for many applications, such as agriculture, hydrology, and natural hazard risk assessment. Dynamical downscaling, the state-of-the-art method to produce localized future climate information, involves running a regional climate model (RCM) driven by an Earth System Model (ESM), but it is too computationally expensive to apply to large climate projection ensembles. We propose an approach combining dynamical downscaling with generative AI to reduce the cost and improve the uncertainty estimates of downscaled climate projections. In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale. This approach leverages the generalizability of physics-based models and the sampling efficiency of diffusion models, enabling the downscaling of large multimodel ensembles. We evaluate our method against dynamically downscaled climate projections from the Coupled Model Intercomparison Project 6 (CMIP6) ensemble. Our results demonstrate its ability to provide more accurate uncertainty bounds on future regional climate than alternatives such as dynamical downscaling of smaller ensembles, or traditional empirical statistical downscaling methods. We also show that dynamical-generative downscaling results in significantly lower errors than popular statistical downscaling techniques, and captures more accurately the spectra, tail dependence, and multivariate correlations of meteorological fields. These characteristics make the dynamical-generative framework a flexible, accurate, and efficient way to downscale large ensembles of climate projections, currently out of reach for pure dynamical downscaling.
View details
HueManity: Probing Fine-Grained Visual Perception in MLLMs
Rynaa Grover
Jayant Tamarapalli
Sahiti Yerramilli
Nilay Pande
(2025)
Preview abstract
Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric "easy" task and a striking 3% on the alphanumeric "hard" task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We will open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs.
View details