Kenton Lee

Kenton Lee

My research focuses on natural language understanding and machine learning. Prior to joining Google, I completed my PhD at the University of Washington while working with Luke Zettlemoyer.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix. View details
    Preview abstract Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations. View details
    Preview abstract Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose a set of pretraining tasks to enhance visual language models' capabilities in jointly modeling charts/plots and language data. We initialize with Pix2Struct, a recently proposed image-to-text visual language model and continue pretraining with our proposed objectives. We argue that numerical reasoning and plot deconstruction enable a model with the key capabilities of (1) extracting key information and (2) reasoning on the extracted information. On standard benchmarks such as PlotQA and ChartQA, our continually pretrained MatCha model outperforms state-of-the-art methods by as much as ~20%. We also examine how well does MatCha pretraining transfer to domains such as screenshot, textbook, and poster figures. We observe improvement over the base Pix2Struct checkpoint by 1.2% on average, verifying the usefulness of MatCha pretraining on broader visual language tasks. View details
    Preview abstract Visual language such as charts and plots are ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art models are end-to-end multimodal Transformers pretrained with dedicated plot derendering and numerical reasoning objectives. However, the models reasoning capabilities still fall short and will generally fail on complex queries. In this paper, we decompose the multimodal reasoning problem into first, a modality conversion problem from image to text, then a purely textual reasoning problem. Through combining a pretrained image-to-text model and an LLM for the task of chart/figure reasoning. Compared with a SOTA model finetuned on >10k data points, our plug-and-play model DePlot-LLM achieves >20% improvement over finetuned SOTA with just one-shot prompting. View details
    Retrieval Augmented Language Model Pre-Training
    Zora Tung
    Panupong Pasupat
    Ming-Wei Chang
    Proceedings of the 37th International Conference on Machine Learning (2020) (to appear)
    Preview abstract Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity. View details
    Preview abstract We study the task of cross-database semantic parsing (XSP), where a system that maps natural language utterances to executable SQL queries is evaluated on databases unseen during training. Recently, several datasets, including Spider, were proposed to support development of XSP systems. We propose a challenging evaluation setup for cross-database semantic parsing, focusing on variation across database schemas and in-domain language use. We re-purpose eight semantic parsing datasets that have been well-studied in the setting where in-domain training data is available, and instead use them as additional evaluation data for XSP systems instead. We build a system that performs well on Spider, and find that it struggles to generalize to our re-purposed set. Our setup uncovers several generalization challenges for cross-database semantic parsing, demonstrating the need to use and develop diverse training and evaluation datasets. View details
    Preview abstract We address the problem of extractive question answering using document-level distant super-vision, pairing questions and relevant documents with answer strings. We compare previously used probability space and distant super-vision assumptions (assumptions on the correspondence between the weak answer string labels and possible answer mention spans). We show that these assumptions interact, and that different configurations provide complementary benefits. We demonstrate that a multi-objective model can efficiently combine the advantages of multiple assumptions and out-perform the best individual formulation. Our approach outperforms previous state-of-the-art models by 4.3 points in F1 on TriviaQA-Wiki and 1.7 points in Rouge-L on NarrativeQA summaries. View details
    Natural Questions: a Benchmark for Question Answering Research
    Olivia Redfield
    Danielle Epstein
    Illia Polosukhin
    Matthew Kelcey
    Jacob Devlin
    Llion Jones
    Ming-Wei Chang
    Jakob Uszkoreit
    Transactions of the Association of Computational Linguistics (2019) (to appear)
    Preview abstract We present the Natural Questions corpus, a question answering dataset. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations, 7,830 examples with 5-way annotations for development data, and a further 7,842 examples 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature. View details
    Preview abstract In this paper we study yes/no questions that are naturally occurring---meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work. View details
    Preview abstract Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match. View details