Michael Collins

Michael Collins

Michael Collins's research interests are in natural language processing and machine learning, with a focus on problems such as statistical parsing, structured prediction problems in machine learning, and applications including machine translation, dialog systems, and speech recognition. Michael is a fellow of the Association for Computational Linguistics, and has received various awards including a Sloan fellowship, an NSF Career award, as well as best paper awards at EMNLP (2002, 2004 and 2010), UAI (2004 and 2005), and CONLL (2008).
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Most recent coreference resolution systems use search algorithms over possible spans to identify mentions and resolve coreference. We instead present a coreference resolution system that uses a text-to-text (seq2seq) paradigm to predict mentions and links jointly, which simplifies the coreference resolution by eliminating both the search for mentions and coreferences. We implemented the coreference system as a transition system and use multilingual T5 as language model. We obtained state-of-the-art accuracy with 83.3 F1-score on the CoNLL-2012 data set. We use the SemEval-2010 data sets to evaluate on languages other than English and get substantially higher Zero-shot F1-scores for 3 out of 4 languages than previous approaches and significantly exceed previous supervised state-of-the-art results for all five tested languages. View details
    Preview abstract With recent improvements in natural language generation (NLG) models for various applications, it has become imperative to have the means to identify and evaluate whether NLG output is only sharing verifiable information about the external world. In this work, we present a new evaluation framework entitled Attributable to Identified Sources (AIS) for assessing the output of natural language generation models, when such output pertains to the external world. We first define AIS and introduce a two-stage annotation pipeline for allowing annotators to appropriately evaluate model output according to AIS guidelines. We empirically validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset) via human evaluation studies that suggest that AIS could serve as a common framework for measuring whether model-generated statements are supported by underlying sources. We release guidelines for the human evaluation studies. View details
    Preview abstract The paper presents an approach to semantic grounding of language models (LMs) that conceptualizes the LM as a conditional model generating text given a desired semantic message. It embeds the LM in an auto-encoder by feeding its output to a semantic parser whose output is in the same representation domain as the input message. Compared to a baseline that generates text using greedy search, we demonstrate two techniques that improve the fluency and semantic accuracy of the generated text: The first technique samples multiple candidate text sequences from which the semantic parser chooses. The second trains the language model while keeping the semantic parser frozen to improve the semantic accuracy of the auto-encoder. We carry out experiments on the English WebNLG 3.0 data set, using BLEU to measure the fluency of generated text and standard parsing metrics to measure semantic accuracy. We show that our proposed approaches significantly improve on the greedy search baseline. Human evaluation corroborates the results of the automatic evaluation experiments. View details
    A Well-Composed Text is Half Done! Composition Sampling for Diverse Conditional Generation
    Yao Zhao
    Mirella Lapata
    Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022), Association for Computational Linguistics, pp. 21
    Preview abstract We propose Composition Sampling, a simple but effective method to generate diverse outputs for conditional generation of higher quality compared to previous stochastic decoding strategies. It builds on recently proposed plan-based neural generation models (Narayan et al., 2021) that are trained to first create a composition of the output and then generate by conditioning on it and the input. Our approach avoids text degeneration by first sampling a composition in the form of an entity chain and then using beam search to generate the best possible text grounded to this entity chain. Experiments on summarization (CNN/DailyMail and XSum) and question generation (SQuAD), using existing and newly proposed automatic metrics together with human-based evaluation, demonstrate that Composition Sampling is currently the best available decoding strategy for generating diverse meaningful outputs. View details
    Preview abstract Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?). View details
    Preview abstract Large language models (LLMs) have been shown to perform well in answering questions and in producing long-form texts such as stories and explanations, both in few-shot closed-book settings. While the former can be validated using well-known evaluation metrics, the latter is difficult to evaluate. To this end, we investigate the ability of LLMs to do both tasks at once -- to do question answering that requires long-form answers. Such questions tend to be multifaceted, i.e., they may have ambiguities and/or require information from multiple sources. To this end, we define query refinement prompts that encourage LLMs to explicitly express the multifacetedness in questions and generate long-form answers covering multiple facets of the question. Our experiments on two long-form question answering datasets, ASQA and AQuAMuSe, show that using our prompts allows us to outperform fully finetuned models in the closed book setting, as well as achieve results comparable to retrieve-then-generate open-book models. View details
    Preview abstract A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility, and trust. To this end, we propose QED, a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. We describe and publicly release an expert-annotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks—post- hoc explanation generation given an answer, and joint question answering and explanation generation. In the joint setting, a promising result suggests that training on a relatively small amount of QED data can improve question answering. In addition to describing the formal, language-theoretic motivations for the QED approach, we describe a large user study showing that the presence of QED explanations significantly improves the ability of untrained raters to spot errors made by a strong neural QA baseline. View details
    Evaluating Explanations: How much do explanations from teachers aid students?
    Danish Pruthi
    Rachit Bansal
    Bhuwan Dhingra
    Zachary Chase Lipton
    Graham Neubig
    Transactions of the Association for Computational Linguistics (TACL) (2021)
    Preview abstract While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the student during training, but are not available at test time. Compared to prior proposals, our approach is less easily gamed, enabling principled, automatic, model-agnostic evaluation of attributions. Using our framework, we compare numerous attribution methods for text classification and question answering, and observe quantitative differences that are consistent (to a moderate to high degree) across different student model architectures and learning strategies. View details
    Preview abstract Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA, a question answering dataset covering 11 typologically diverse languages. Until recently, most multilingual research in natural language processing has been limited to machine translation or to technical tasks such as tagging and parsing. Question answering offers a scenario that is natural in that non-technical users intuitively understand the task, allowing high quality data collection in the absence of abundant annotators with expertise in both linguistics and the language of interest. This allows us select languages that are diverse with regard to their typology -- the set of linguistic features that each language expresses. We expect that models that can perform well on this set will generalize across a large number of the languages in the world. To encourage a more realistic distribution, the data is collected entirely in each native language without the use of translation (human or otherwise) and question creation is performed without seeing the answers. We present a quantitative analysis of the data quality, we provide example-level linguistic analyses and glosses of language phenomena that would not be found in English-only corpora, and we measure the performance of baseline systems. View details
    Fusion of Detected Objects in Text for Visual Question Answering
    Jeffrey Ling
    Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (2019), pp. 2131-2140
    Preview abstract To advance models of multimodal context‚ we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The “Bounding Boxes in Text Transformer” (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark (visualcommonsense.org)‚ achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard. A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided as supplementary material. View details