Jump to Content

Coreference Resolution through a seq2seq Transition-Based System

TACL (2023) (to appear)
Google Scholar


Most recent coreference resolution systems use search algorithms over possible spans to identify mentions and resolve coreference. We instead present a coreference resolution system that uses a text-to-text (seq2seq) paradigm to predict mentions and links jointly, which simplifies the coreference resolution by eliminating both the search for mentions and coreferences. We implemented the coreference system as a transition system and use multilingual T5 as language model. We obtained state-of-the-art accuracy with 83.3 F1-score on the CoNLL-2012 data set. We use the SemEval-2010 data sets to evaluate on languages other than English and get substantially higher Zero-shot F1-scores for 3 out of 4 languages than previous approaches and significantly exceed previous supervised state-of-the-art results for all five tested languages.