Greg Corrado

Greg Corrado

Greg Corrado is a senior research scientist interested in biological neuroscience, artificial intelligence, and scalable machine learning. He has published in fields ranging across behavioral economics, neuromorphic device physics, systems neuroscience, and deep learning. At Google he has worked for some time on brain inspired computing, and most recently has served as one of the founding members and the co-technical lead of Google's large scale deep neural networks project.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Triaging mammography with artificial intelligence: an implementation study
    Sarah M. Friedewald
    Sunny Jansen
    Fereshteh Mahvar
    Timo Kohlberger
    David V. Schacht
    Sonya Bhole
    Dipti Gupta
    Scott Mayer McKinney
    Stacey Caron
    David Melnick
    Mozziyar Etemadi
    Samantha Winter
    Alejandra Maciel
    Luca Speroni
    Martha Sevenich
    Arnav Agharwal
    Rubin Zhang
    Gavin Duggan
    Shiro Kadowaki
    Atilla Kiraly
    Jie Yang
    Basil Mustafa
    Krish Eswaran
    Shravya Shetty
    Breast Cancer Research and Treatment (2025)
    Preview abstract Purpose Many breast centers are unable to provide immediate results at the time of screening mammography which results in delayed patient care. Implementing artificial intelligence (AI) could identify patients who may have breast cancer and accelerate the time to diagnostic imaging and biopsy diagnosis. Methods In this prospective randomized, unblinded, controlled implementation study we enrolled 1000 screening participants between March 2021 and May 2022. The experimental group used an AI system to prioritize a subset of cases for same-visit radiologist evaluation, and same-visit diagnostic workup if necessary. The control group followed the standard of care. The primary operational endpoints were time to additional imaging (TA) and time to biopsy diagnosis (TB). Results The final cohort included 463 experimental and 392 control participants. The one-sided Mann-Whitney U test was employed for analysis of TA and TB. In the control group, the TA was 25.6 days [95% CI 22.0–29.9] and TB was 55.9 days [95% CI 45.5–69.6]. In comparison, the experimental group's mean TA was reduced by 25% (6.4 fewer days [one-sided 95% CI > 0.3], p<0.001) and mean TB was reduced by 30% (16.8 fewer days; 95% CI > 5.1], p=0.003). The time reduction was more pronounced for AI-prioritized participants in the experimental group. All participants eventually diagnosed with breast cancer were prioritized by the AI. Conclusions Implementing AI prioritization can accelerate care timelines for patients requiring additional workup, while maintaining the efficiency of delayed interpretation for most participants. Reducing diagnostic delays could contribute to improved patient adherence, decreased anxiety and addressing disparities in access to timely care. View details
    Performance of a Deep Learning Diabetic Retinopathy Algorithm in India
    Arthur Brant
    Xiang Yin
    Lu Yang
    Jay Nayar
    Divleen Jeji
    Sunny Virmani
    Anchintha Meenu
    Naresh Babu Kannan
    Florence Thng
    Lily Peng
    Ramasamy Kim
    JAMA Network Open (2025)
    Preview abstract Importance: While prospective studies have investigated the accuracy of artificial intelligence (AI) for detection of diabetic retinopathy (DR) and diabetic macular edema (DME), to date, little published data exist on the clinical performance of these algorithms. Objective: To evaluate the clinical performance of an automated retinal disease assessment (ARDA) algorithm in the postdeployment setting at Aravind Eye Hospital in India. Design, Setting, and Participants: This cross-sectional analysis involved an approximate 1% sample of fundus photographs from patients screened using ARDA. Images were graded via adjudication by US ophthalmologists for DR and DME, and ARDA’s output was compared against the adjudicated grades at 45 sites in Southern India. Patients were randomly selected between January 1, 2019, and July 31, 2023. Main Outcomes and Measures: Primary analyses were the sensitivity and specificity of ARDA for severe nonproliferative DR (NPDR) or proliferative DR (PDR). Secondary analyses focused on sensitivity and specificity for sight-threatening DR (STDR) (DME or severe NPDR or PDR). Results: Among the 4537 patients with 4537 images with adjudicated grades, mean (SD) age was 55.2 (11.9) years and 2272 (50.1%) were male. Among the 3941 patients with gradable photographs, 683 (17.3%) had any DR, 146 (3.7%) had severe NPDR or PDR, 109 (2.8%) had PDR, and 398 (10.1%) had STDR. ARDA’s sensitivity and specificity for severe NPDR or PDR were 97.0% (95% CI, 92.6%-99.2%) and 96.4% (95% CI, 95.7%-97.0%), respectively. Positive predictive value (PPV) was 50.7% and negative predictive value (NPV) was 99.9%. The clinically important miss rate for severe NPDR or PDR was 0% (eg, some patients with severe NPDR or PDR were interpreted as having moderate DR and referred to clinic). ARDA’s sensitivity for STDR was 95.9% (95% CI, 93.0%-97.4%) and specificity was 94.9% (95% CI, 94.1%-95.7%); PPV and NPV were 67.9% and 99.5%, respectively. Conclusions and Relevance: In this cross-sectional study investigating the clinical performance of ARDA, sensitivity and specificity for severe NPDR and PDR exceeded 96% and caught 100% of patients with severe  NPDR and PDR for ophthalmology referral. This preliminary large-scale postmarketing report of the performance of ARDA after screening 600 000 patients in India underscores the importance of monitoring and publication an algorithm's clinical performance, consistent with recommendations by regulatory bodies. View details
    Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan
    Atilla Kiraly
    Corbin Cunningham
    Ryan Najafi
    Jie Yang
    Chuck Lau
    Diego Ardila
    Scott Mayer McKinney
    Rory Pilgrim
    Mozziyar Etemadi
    Sunny Jansen
    Lily Peng
    Shravya Shetty
    Neeral Beladia
    Krish Eswaran
    Radiology: Artificial Intelligence (2024)
    Preview abstract Lung cancer is the leading cause of cancer death world-wide with 1.8 million deaths in 20201. Studies have concluded that low-dose computed tomography lung cancer screening can reduce mortality by up to 61%2 and updated 2021 US guidelines expanded eligibility. As screening efforts rise, AI can play an important role, but must be unobtrusively integrated into existing clinical workflows. In this work, we introduce a state-of-the-art, cloud-based AI system providing lung cancer risk assessments without requiring any user input. We demonstrate its efficacy in assisting lung cancer screening under both US and Japanese screening settings using different patient populations and screening protocols. Technical improvements over a previously described system include a focus on earlier cancer detection for improved accuracy, introduction of an effective assistive user interface, and a system designed to integrate into typical clinical workflows. The stand-alone AI system was evaluated on 3085 individuals achieving area under the curve (AUC) scores of 91.7% (95%CI [89.6, 95.2]), 93.3% (95%CI [90.2, 95.7]), and 89.1% (95%CI [77.7, 97.3]) on three datasets (two from US and one from Japan), respectively. To evaluate the system’s assistive ability, we conducted two retrospective multi-reader multi-case studies on 627 cases read by experienced board certified radiologists (average 20 years of experience [7,40]) using local PACS systems in the respective US and Japanese screening settings. The studies measured the reader’s level of suspicion (LoS) and categorical responses for scores and management recommendations under country-specific screening protocols. The radiologists’ AUC for LoS increased with AI assistance by 2.3% (95%CI [0.1-4.5], p=0.022) for the US study and by 2.3% (95%CI [-3.5-8.1], p=0.179) for the Japan study. Specificity for recalls increased by 5.5% (95%CI [2.7-8.5], p<0.0001) for the US and 6.7% (95%CI [4.7-8.7], p<0.0001) for the Japan study. No significant reduction in other metrics occured. This work advances the state-of-the-art in lung cancer detection, introduces generalizable interface concepts that can be applicable to similar AI applications, and demonstrates its potential impact on diagnostic AI in global lung cancer screening with results suggesting a substantial drop in unnecessary follow-up procedures without impacting sensitivity. View details
    Preview abstract Importance: Interest in artificial intelligence (AI) has reached an all-time high, and health care leaders across the ecosystem are faced with questions about where, when, and how to deploy AI and how to understand its risks, problems, and possibilities. Observations: While AI as a concept has existed since the 1950s, all AI is not the same. Capabilities and risks of various kinds of AI differ markedly, and on examination 3 epochs of AI emerge. AI 1.0 includes symbolic AI, which attempts to encode human knowledge into computational rules, as well as probabilistic models. The era of AI 2.0 began with deep learning, in which models learn from examples labeled with ground truth. This era brought about many advances both in people’s daily lives and in health care. Deep learning models are task-specific, meaning they do one thing at a time, and they primarily focus on classification and prediction. AI 3.0 is the era of foundation models and generative AI. Models in AI 3.0 have fundamentally new (and potentially transformative) capabilities, as well as new kinds of risks, such as hallucinations. These models can do many different kinds of tasks without being retrained on a new dataset. For example, a simple text instruction will change the model’s behavior. Prompts such as “Write this note for a specialist consultant” and “Write this note for the patient’s mother” will produce markedly different content. Conclusions and Relevance: Foundation models and generative AI represent a major revolution in AI’s capabilities, ffering tremendous potential to improve care. Health care leaders are making decisions about AI today. While any heuristic omits details and loses nuance, the framework of AI 1.0, 2.0, and 3.0 may be helpful to decision-makers because each epoch has fundamentally different capabilities and risks. View details
    Differences between Patient and Clinician Submitted Images: Implications for Virtual Care of Skin Conditions
    Rajeev Rikhye
    Grace Eunhae Hong
    Margaret Ann Smith
    Aaron Loh
    Vijaytha Muralidharan
    Doris Wong
    Michelle Phung
    Nicolas Betancourt
    Bradley Fong
    Rachna Sahasrabudhe
    Khoban Nasim
    Alec Eschholz
    Kat Chou
    Peggy Bui
    Justin Ko
    Steven Lin
    Mayo Clinic Proceedings: Digital Health (2024)
    Preview abstract Objective: To understand and highlight the differences in clinical, demographic, and image quality characteristics between patient-taken (PAT) and clinic-taken (CLIN) photographs of skin conditions. Patients and Methods: This retrospective study applied logistic regression to data from 2500 deidentified cases in Stanford Health Care’s eConsult system, from November 2015 to January 2021. Cases with undiagnosable or multiple conditions or cases with both patient and clinician image sources were excluded, leaving 628 PAT cases and 1719 CLIN cases. Demographic characteristic factors, such as age and sex were self-reported, whereas anatomic location, estimated skin type, clinical signs and symptoms, condition duration, and condition frequency were summarized from patient health records. Image quality variables such as blur, lighting issues and whether the image contained skin, hair, or nails were estimated through a deep learning model. Results: Factors that were positively associated with CLIN photographs, post-2020 were as follows: age 60 years or older, darker skin types (eFST V/VI), and presence of skin growths. By contrast, factors that were positively associated with PAT photographs include conditions appearing intermittently, cases with blurry photographs, photographs with substantial nonskin (or nail/hair) regions and cases with more than 3 photographs. Within the PAT cohort, older age was associated with blurry photographs. Conclusion: There are various demographic, clinical, and image quality characteristic differences between PAT and CLIN photographs of skin concerns. The demographic characteristic differences present important considerations for improving digital literacy or access, whereas the image quality differences point to the need for improved patient education and better image capture workflows, particularly among elderly patients. View details
    Towards a Personal Health Large Language Model
    Anastasiya Belyaeva
    Nick Furlotte
    Zhun Yang
    Chace Lee
    Erik Schenck
    Yojan Patel
    Jian Cui
    Logan Schneider
    Robby Bryant
    Ryan Gomes
    Allen Jiang
    Roy Lee
    Javier Perez
    Jamie Rogers
    Cathy Speed
    Shyam Tailor
    Megan Walker
    Jeffrey Yu
    Tim Althoff
    Conor Heneghan
    Mark Malhotra
    Shwetak Patel
    Shravya Shetty
    Jiening Zhan
    Yeswanth Subramanian
    Daniel McDuff
    arXiv (2024)
    Preview abstract Large language models (LLMs) can retrieve, reason over, and make inferences about a wide range of information. In health, most LLM efforts to date have focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into clinical tasks, provide a rich, continuous, and longitudinal source of data relevant for personal health monitoring. Here we present a new model, Personal Health Large Language Model (PH-LLM), a version of Gemini fine-tuned for text understanding and reasoning over numerical time-series personal health data for applications in sleep and fitness. To systematically evaluate PH-LLM, we created and curated three novel benchmark datasets that test 1) production of personalized insights and recommendations from measured sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep quality outcomes. For the insights and recommendations tasks we created 857 case studies in sleep and fitness. These case studies, designed in collaboration with domain experts, represent real-world scenarios and highlight the model’s capabilities in understanding and coaching. Through comprehensive human and automatic evaluation of domain-specific rubrics, we observed that both Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. To further assess expert domain knowledge, we evaluated PH-LLM performance on multiple choice question examinations in sleep medicine and fitness. PH-LLM achieved 79% on sleep (N=629 questions) and 88% on fitness (N=99 questions), both of which exceed average scores from a sample of human experts as well as benchmarks for receiving continuing credit in those domains. To enable PH-LLM to predict self-reported assessments of sleep quality, we trained the model to predict self-reported sleep disruption and sleep impairment outcomes from textual and multimodal encoding representations of wearable sensor data. We demonstrate that multimodal encoding is both necessary and sufficient to match performance of a suite of discriminative models to predict these outcomes. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge base and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM. View details
    Prospective Multi-Site Validation of AI to Detect Tuberculosis and Chest X-Ray Abnormalities
    Sahar Kazemzadeh
    Atilla Kiraly
    Nsala Sanjase
    Minyoi Maimbolwa
    Brian Shuma
    Shahar Jamshy
    Christina Chen
    Arnav Agharwal
    Chuck Lau
    Daniel Golden
    Jin Yu
    Eric Wu
    Kat Chou
    Shravya Shetty
    Krish Eswaran
    Rory Pilgrim
    Monde Muyoyeta
    NEJM AI (2024)
    Preview abstract Background Using artificial intelligence (AI) to interpret chest X-rays (CXRs) could support accessible triage tests for active pulmonary tuberculosis (TB) in resource-constrained settings. Methods The performance of two cloud-based CXR AI systems — one to detect TB and the other to detect CXR abnormalities — in a population with a high TB and human immunodeficiency virus (HIV) burden was evaluated. We recruited 1978 adults who had TB symptoms, were close contacts of known TB patients, or were newly diagnosed with HIV at three clinical sites. The TB-detecting AI (TB AI) scores were converted to binary using two thresholds: a high-sensitivity threshold and an exploratory threshold designed to resemble radiologist performance. Ten radiologists reviewed images for signs of TB, blinded to the reference standard. Primary analysis measured AI detection noninferiority to radiologist performance. Secondary analysis evaluated AI detection as compared with the World Health Organization (WHO) targets (90% sensitivity, 70% specificity). Both used an absolute margin of 5%. The abnormality-detecting AI (abnormality AI) was evaluated for noninferiority to a high-sensitivity target suitable for triaging (90% sensitivity, 50% specificity). Results Of the 1910 patients analyzed, 1827 (96%) had conclusive TB status, of which 649 (36%) were HIV positive and 192 (11%) were TB positive. The TB AI’s sensitivity and specificity were 87% and 70%, respectively, at the high-sensitivity threshold and 78% and 82%, respectively, at the balanced threshold. Radiologists’ mean sensitivity was 76% and mean specificity was 82%. At the high-sensitivity threshold, the TB AI was noninferior to average radiologist sensitivity (P<0.001) but not to average radiologist specificity (P=0.99) and was higher than the WHO target for specificity but not sensitivity. At the balanced threshold, the TB AI was comparable to radiologists. The abnormality AI’s sensitivity and specificity were 97% and 79%, respectively, with both meeting the prespecified targets. Conclusions The CXR TB AI was noninferior to radiologists for active pulmonary TB triaging in a population with a high TB and HIV burden. Neither the TB AI nor the radiologists met WHO recommendations for sensitivity in the study population. AI can also be used to detect other CXR abnormalities in the same population. View details
    Preview abstract Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and our dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed by narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an artificial intelligence (AI) system promotes equitable health outcomes, we hope that it can be leveraged and built upon toward a shared goal of LLMs that promote accessible and equitable healthcare. View details
    Preview abstract Background Skin conditions are extremely common worldwide, and are an important cause of both anxiety and morbidity. Since the advent of the internet, individuals have used text-based search (eg, “red rash on arm”) to learn more about concerns on their skin, but this process is often hindered by the inability to accurately describe the lesion’s morphology. In the study, we surveyed respondents’ experiences with an image-based search, compared to the traditional text-based search experience. Methods An internet-based survey was conducted to evaluate the experience of text-based vs image-based search for skin conditions. We recruited respondents from an existing cohort of volunteers in a commercial survey panel; survey respondents that met inclusion/exclusion criteria, including willingness to take photos of a visible concern on their body, were enrolled. Respondents were asked to use the Google mobile app to conduct both regular text-based search (Google Search) and image-based search (Google Lens) for their concern, with the order of text vs. image search randomized. Satisfaction for each search experience along six different dimensions were recorded and compared, and respondents’ preferences for the different search types along these same six dimensions were recorded. Results 372 respondents were enrolled in the study, with 44% self-identifying as women, 86% as White and 41% over age 45. The rate of respondents who were at least moderately familiar with searching for skin conditions using text-based search versus image-based search were 81.5% and 63.5%, respectively. After using both search modalities, respondents were highly satisfied with both image-based and text-based search, with >90% at least somewhat satisfied in each dimension and no significant differences seen between text-based and image-based search when examining the responses on an absolute scale per search modality. When asked to directly rate their preferences in a comparative way, survey respondents preferred image-based search over text-based search in 5 out of 6 dimensions, with an absolute 9.9% more preferring image-based search over text-based search overall (p=0.004). 82.5% (95% CI 78.2 - 86.3) reported a preference to leverage image-based search (alone or in combination with text-based search) in future searches. Of those who would prefer to use a combination of both, 64% indicated they would like to start with image-based search, indicating that image-based search may be the preferred entry point for skin-related searches. Conclusion Despite being less familiar with image-based search upon study inception, survey respondents generally preferred image-based search to text-based search and overwhelmingly wanted to include this in future searches. These results suggest the potential for image-based search to play a key role in people searching for information regarding skin concerns. View details
    Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements
    Abbi Ward
    Jimmy Li
    Julie Wang
    Sriram Lakshminarasimhan
    Ashley Carrick
    Jay Hartford
    Pradeep Kumar S
    Sunny Virmani
    Renee Wong
    Margaret Ann Smith
    Dawn Siegel
    Steven Lin
    Justin Ko
    JAMA Network Open (2024)
    Preview abstract Importance: Health datasets from clinical sources do not reflect the breadth and diversity of disease, impacting research, medical education, and artificial intelligence tool development. Assessments of novel crowdsourcing methods to create health datasets are needed. Objective: To evaluate if web search advertisements (ads) are effective at creating a diverse and representative dermatology image dataset. Design, Setting, and Participants: This prospective observational survey study, conducted from March to November 2023, used Google Search ads to invite internet users in the US to contribute images of dermatology conditions with demographic and symptom information to the Skin Condition Image Network (SCIN) open access dataset. Ads were displayed against dermatology-related search queries on mobile devices, inviting contributions from adults after a digital informed consent process. Contributions were filtered for image safety and measures were taken to protect privacy. Data analysis occurred January to February 2024. Exposure: Dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and estimated Monk Skin Tone (eMST) labels. Main Outcomes and Measures: The primary metrics of interest were the number, quality, demographic diversity, and distribution of clinical conditions in the crowdsourced contributions. Spearman rank order correlation was used for all correlation analyses, and the χ2 test was used to analyze differences between SCIN contributor demographics and the US census. Results: In total, 5749 submissions were received, with a median of 22 (14-30) per day. Of these, 5631 (97.9%) were genuine images of dermatological conditions. Among contributors with self-reported demographic information, female contributors (1732 of 2596 contributors [66.7%]) and younger contributors (1329 of 2556 contributors [52.0%] aged <40 years) had a higher representation in the dataset compared with the US population. Of 2614 contributors who reported race and ethnicity, 852 (32.6%) reported a racial or ethnic identity other than White. Dermatologist confidence in assigning a differential diagnosis increased with the number of self-reported demographic and skin-condition–related variables (Spearman R = 0.1537; P < .001). Of 4019 contributions reporting duration since onset, 2170 (54.0%) reported onset within less than 7 days of submission. Of the 2835 contributions that could be assigned a dermatological differential diagnosis, 2523 (89.0%) were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. Conclusions and Relevance: The findings of this survey study suggest that search ads are effective at crowdsourcing dermatology images and could therefore be a useful method to create health datasets. The SCIN dataset bridges important gaps in the availability of images of common, short-duration skin conditions. View details