Jump to Content
Wenxing Ye

Wenxing Ye

Health+AI
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan
    Atilla Kiraly
    Corbin Cunningham
    Ryan Najafi
    Jie Yang
    Chuck Lau
    Diego Ardila
    Scott Mayer McKinney
    Rory Pilgrim
    Mozziyar Etemadi
    Sunny Jansen
    Lily Peng
    Shravya Shetty
    Neeral Beladia
    Radiology: Artificial Intelligence (2024)
    Preview abstract Lung cancer is the leading cause of cancer death world-wide with 1.8 million deaths in 20201. Studies have concluded that low-dose computed tomography lung cancer screening can reduce mortality by up to 61%2 and updated 2021 US guidelines expanded eligibility. As screening efforts rise, AI can play an important role, but must be unobtrusively integrated into existing clinical workflows. In this work, we introduce a state-of-the-art, cloud-based AI system providing lung cancer risk assessments without requiring any user input. We demonstrate its efficacy in assisting lung cancer screening under both US and Japanese screening settings using different patient populations and screening protocols. Technical improvements over a previously described system include a focus on earlier cancer detection for improved accuracy, introduction of an effective assistive user interface, and a system designed to integrate into typical clinical workflows. The stand-alone AI system was evaluated on 3085 individuals achieving area under the curve (AUC) scores of 91.7% (95%CI [89.6, 95.2]), 93.3% (95%CI [90.2, 95.7]), and 89.1% (95%CI [77.7, 97.3]) on three datasets (two from US and one from Japan), respectively. To evaluate the system’s assistive ability, we conducted two retrospective multi-reader multi-case studies on 627 cases read by experienced board certified radiologists (average 20 years of experience [7,40]) using local PACS systems in the respective US and Japanese screening settings. The studies measured the reader’s level of suspicion (LoS) and categorical responses for scores and management recommendations under country-specific screening protocols. The radiologists’ AUC for LoS increased with AI assistance by 2.3% (95%CI [0.1-4.5], p=0.022) for the US study and by 2.3% (95%CI [-3.5-8.1], p=0.179) for the Japan study. Specificity for recalls increased by 5.5% (95%CI [2.7-8.5], p<0.0001) for the US and 6.7% (95%CI [4.7-8.7], p<0.0001) for the Japan study. No significant reduction in other metrics occured. This work advances the state-of-the-art in lung cancer detection, introduces generalizable interface concepts that can be applicable to similar AI applications, and demonstrates its potential impact on diagnostic AI in global lung cancer screening with results suggesting a substantial drop in unnecessary follow-up procedures without impacting sensitivity. View details
    Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19
    Shahar Jamshy
    Charles Lau
    Eddie Santos
    Atilla Peter Kiraly
    Jie Yang
    Rory Pilgrim
    Sahar Kazemzadeh
    Jin Yu
    Lily Hao Yi Peng
    Neeral Beladia
    Cameron Chen
    Shravya Ramesh Shetty
    Scientific Reports (2021)
    Preview abstract Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligence (AI) systems. However, the wide range of possible CXR abnormalities makes it impractical to detect every possible condition by building multiple separate systems, each of which detects one or more pre-specified conditions. In this work, we developed and evaluated an AI system to classify CXRs as normal or abnormal. For training and tuning the system, we used a de-identified dataset of 248,445 patients from a multi-city hospital network in India. To assess generalizability, we evaluated our system using 6 international datasets from India, China, and the United States. Of these datasets, 4 focused on diseases that the AI was not trained to detect: 2 datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our results suggest that the AI system trained using a large dataset containing a diverse array of CXR abnormalities generalizes to new patient populations and unseen diseases. In a simulated workflow where the AI system prioritized abnormal cases, the turnaround time for abnormal cases reduced by 7–28%. These results represent an important step towards evaluating whether AI can be safely used to flag cases in a general setting where previously unseen abnormalities exist. Lastly, to facilitate the continued development of AI models for CXR, we release our collected labels for the publicly available dataset. View details
    End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
    Diego Ardila
    Atilla Peter Kiraly
    Sujeeth Bharadwaj
    Bokyung Choi
    Joshua Reicher
    Lily Peng
    Mozziyar Etemadi
    David Naidich
    Shravya Ramesh Shetty
    Nature Medicine (2019)
    Preview abstract With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States1. Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20–43% and is now included in US screening guidelines. Existing challenges include inter-grader variability and high false-positive and false-negative rates. We propose a deep learning algorithm that uses a patient’s current and prior computed tomography volumes to predict the risk of lung cancer. Our model achieves a state-of-the-art performance (94.4% area under the curve) on 6,716 National Lung Cancer Screening Trial cases, and performs similarly on an independent clinical validation set of 1,139 cases. We conducted two reader studies. When prior computed tomography imaging was not available, our model outperformed all six radiologists with absolute reductions of 11% in false positives and 5% in false negatives. Where prior computed tomography imaging was available, the model performance was on-par with the same radiologists. This creates an opportunity to optimize the screening process via computer assistance and automation. While the vast majority of patients remain unscreened, we show the potential for deep learning models to increase the accuracy, consistency and adoption of lung cancer screening worldwide. View details
    No Results Found