Burcu Karagol Ayan

Burcu Karagol Ayan

Burcu Karagol Ayan is a software engineer at Google Research working on natural language understanding, multimodal datasets and responsible AI for multimodal systems. She received her PhD from the University of Maryland.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Despite the longstanding adage "an image is worth a thousand words," creating accurate and hyper-detailed image descriptions for training Vision-Language models remains challenging. Current datasets typically have web-scraped descriptions that are short, low-granularity, and often contain details unrelated to the visual content. As a result, models trained on such data generate descriptions replete with missing information, visual inconsistencies, and hallucinations. To address these issues, we introduce ImageInWords (IIW), a carefully designed human-in-the-loop annotation framework for curating hyper-detailed image descriptions and a new dataset resulting from this process. We validate the framework through evaluations focused on the quality of the dataset and its utility for fine-tuning with considerations for readability, comprehensiveness, specificity, hallucinations, and human-likeness. Our dataset significantly improves across these dimensions compared to recently released datasets (+66%) and GPT-4V outputs (+48%). Furthermore, models fine-tuned with IIW data excel by +31% against prior work along the same human evaluation dimensions. Given our fine-tuned models, we also evaluate text-to-image generation and vision-language reasoning. Our model's descriptions can generate images closest to the original, as judged by both automated and human metrics. We also find our model produces more compositionally rich descriptions, outperforming the best baseline by up to 6% on ARO, SVO-Probes, and Winoground datasets. View details
    PaLI: A Jointly-Scaled Multilingual Language-Image Model
    Piotr Padlewski
    Daniel Salz
    Sebastian Alexander Goodman
    Basil Mustafa
    Lucas Beyer
    Alexander Kolesnikov
    Keran Rong
    Hassan Akbari
    Linting Xue
    James Bradbury
    Chao Jia
    Carlos Riquelme
    Xiaohua Zhai
    Neil Houlsby
    International Conference on Learning Representations (ICLR) (2023)
    Preview abstract Effective scaling and a flexible task interface enable large-capacity language models to excel at many tasks. PaLI (Pathways Language and Image model) extends these ideas to the joint modeling of language and vision. PaLI is a model that generates text based on visual and textual inputs. Using this API, PaLI is able to perform many vision, language, and multimodal tasks, across many languages. We train PaLI with two main principles: reuse of pretrained unimodal components, and joint scaling of modalities. Using large-capacity pretrained language models and vision models allows us to capitalize on their existing capabilities, while leveraging the substantial cost of training them. We scale PaLI models across three axes:the language component, the vision component, and the training data that fuses them. For the vision component, we train the largest and best-performing VisionTransformer (ViT) to date. For the data, we build an image-text training set over10B images and covering over 100 languages. PaLI inherits and enhances language-understanding capabilities, and achieves state-of-the-art in multiple vision and language tasks (image classification, image captioning, visual question-answering, scene-text understanding, etc.), based on a simple, modular, and reuse-friendly platform for modeling and scaling. View details
    Preview abstract Many Question-Answering (QA) datasets contain unanswerable questions, but their treatment in QA systems remains primitive. Our analysis of the Natural Questions (Kwiatkowski et al., 2019) dataset reveals that a substantial portion of unanswerable questions (∼21%) can be explained based on the presence of unverifiable presuppositions. Through a user preference study, we demonstrate that the oracle behavior of our proposed system—which provides responses based on presupposition failure—is preferred over the oracle behavior of existing QA systems. Then, we present a novel framework for implementing such a system in three steps: presupposition generation, presupposition verification, and explanation generation, reporting progress on each. Finally, we show that a simple modification of adding presuppositions and their verifiability to the input of a competitive end-to-end QA system yields modest gains in QA performance and unanswerability detection, demonstrating the promise of our approach. View details
    Context-Based Quotation Recommendation
    Ansel Mitchell MacLaughlin
    Dan Roth
    The 15th International AAAI Conference on Web and Social Media (ICWSM'21) (2021)
    Preview abstract While composing a new document, anything from a news article to an email or essay, authors often utilize direct quotes from a variety of sources. Although an author may know what point they would like to make, selecting an appropriate quote for the specific context may be time-consuming and difficult. We therefore propose a novel context-aware quote recommendation system which utilizes the content an author has already written to generate a ranked list of quotable paragraphs and spans of tokens from a given source document. We approach quote recommendation as a variant of open-domain question answering and adapt the state-of-the-art BERT-based methods from open-QA to our task. We conduct experiments on a collection of speech transcripts and associated news articles, evaluating models' paragraph ranking and span prediction performances. Our experiments confirm the strong performance of BERT-based methods on this task, which outperform bag-of-words and neural ranking baselines by more than 30% relative across all ranking metrics. Qualitative analyses show the difficulty of the paragraph and span recommendation tasks and confirm the quotability of the best BERT model's predictions, even if they are not the true selected quotes from the original news articles. View details
    Text Classification with Few Examples using Controlled Generalization
    Abhijit Mahabal
    Dan Roth
    Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics
    Preview abstract Training data for text classification is often limited in practice, especially for applications with many output classes or involving many related classification problems. This means classifiers must generalize from limited evidence, but the manner and extent of generalization is task dependent. Current practice primarily relies on pre-trained word embeddings to map words unseen in training to similar seen ones. Unfortunately, this squishes many components of meaning into highly restricted capacity. Our alternative begins with sparse pre-trained representations derived from unlabeled parsed corpora; based on the available training data, we select features that offers the relevant generalizations. This produces task-specific semantic vectors; here, we show that a feed-forward network over these vectors is especially effective in low-data scenarios, compared to existing state-of-the-art methods. By further pairing this network with a convolutional neural network, we keep this edge in low data scenarios and remain competitive when using full training sets. View details