Michal Yarom
Research Areas
Authored Publications
Sort By
MaXM: Towards Multilingual Visual Question Answering
Linting Xue
Findings of ACL: EMNLP (2023)
Preview abstract
Visual Question Answering (VQA) has been primarily studied through the lens of the English language. Yet, tackling VQA in other languages in the same manner would require a considerable amount of resources. In this paper, we propose scalable solutions to multilingual visual question answering (mVQA), on both data and modeling fronts. We first propose a translation-based framework to mVQA data generation that requires much less human annotation efforts than the conventional approach of directly collection questions and answers. Then, we apply our framework to the multilingual captions in the Crossmodal-3600 dataset and develop an efficient annotation protocol to create MaXM, a test-only VQA benchmark in 7 diverse languages. Finally, we develop a simple, lightweight, and effective approach as well as benchmark state-of-the-art English and multilingual VQA models. We hope that our benchmark encourages further research on mVQA.
View details
What You See is What You Read? Improving Text-Image Alignment Evaluation
Eran Ofek
arXiv (2023)
Preview abstract
Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic image-text alignment evaluation. We first introduce a comprehensive evaluation set spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach based on synthetic data generation. Both methods surpass prior approaches in various text-image alignment tasks, with our analysis showing significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation.
View details
Preview abstract
Text to image generation methods (T2I) are widely popular in generating art and other creative artifacts.
While hallucination can be a positive factor in scenarios where creativity is appreciated, such artifacts are poorly suited for tasks where the generated image needs to be grounded in a strict manner, e.g. as an illustration of a task, an action or in the context of a story.
In this paper, we propose to strengthen the factual consistency properties of T2I methods in the presence of natural prompts.
First, we cast the problem as an MT problem that translates natural prompts into visual prompts. Then we filter the image with a VQA approach where we answer a set of questions in the visual domain (the image) and in the natural language domain (the natural prompt).
Finally, to measure the alignment of answers, we depart from the recent literature that do string matching, and compare answers in an embedding space that assesses the semantic and entailment associations between a natural prompt and its generated image.
View details
Self-Distilled StyleGAN: Towards Generation from Internet Photos
Ron Mokady
Michal Irani
Proceedings of the 49th Annual Conference on Computer Graphics and Interactive Techniques (2022)
Preview abstract
StyleGAN is known to produce high-fidelity images, while also offering unprecedented semantic editing. However, these fascinating abilities have been demonstrated only on a limited set of datasets, which are usually structurally aligned and well curated.
In this paper, we show how StyleGAN can be adapted to work on raw uncurated images collected from the Internet. Such image collections impose two main challenges to StyleGAN: they contain many outlier images, and are characterized by a multi-modal distribution. Training StyleGAN on such raw image collections results in degraded image synthesis quality. To meet these challenges, we proposed a StyleGAN-based self-distillation approach, which consists of two main components: (i) A generative-based self-filtering of the dataset to eliminate out-of-distribution images, in order to generate an adequate training set, and (ii) Perceptual clustering of the generated images to detect the inherent data modalities, which are then employed to improve StyleGAN’s “truncation trick” in the image synthesis process. The presented technique enables the generation of high-quality images, while better reserving the diversity of the data. Through qualitative and quantitative evaluation, we demonstrate the power of our approach to new challenging and diverse domains collected from the Internet. New datasets and pre-trained models will be published upon acceptance.
View details
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Yossi Gandelsman
Yoav Itzhak Wald
Phillip Isola
Michal Irani
Proc. ICCV 2021
Preview abstract
Image classification models can depend on multiple different semantic attributes of the image. An explanation of the decision of the classifier needs to both discover and visualize these properties. Here we present StylEx, a method for doing this, by training a generative model to specifically explain multiple attributes that underlie classifier decisions. A natural source for such attributes is the S-space of StyleGAN, which is known to generate semantically meaningful dimensions in the image. However, these will typically not correspond to classifier-specific attributes since standard GAN training is not dependent on the classifier. To overcome this, we propose training procedure for
a StyleGAN, which incorporates the classifier model. This results in an S-space that captures distinct attributes underlying classifier outputs. After training, the model can be used to visualize the effect of changing multiple attributes per image, thus providing an image-specific explanation. We apply StylEx to multiple domains, including animals, leaves, faces and retinal images. For these, we show how an image can be changed in different ways to change its classifier prediction.
Our results show that the method finds attributes that align well with semantic ones, generate meaningful image-specific explanations, and are interpretable as measured in user-studies.
View details
Preview abstract
We present a novel GAN-based model that utilizes the space of deep features learned by a pre-trained object recognition model. Inspired by classical image pyramid representations, we construct our model as a Semantic Generation Pyramid -- a hierarchical framework which leverages the continuum of semantic information encapsulated in such deep features; this ranges from low level information contained in fine features to high level, semantic information contained in deeper features. More specifically, given a set of features extracted from a reference image, our model generates diverse image samples, each with matching features at each semantic level of the recognition model. We demonstrate that our model results in a versatile and flexible framework that can be used in various classic and novel image generation tasks. These include: generating images with a controllable extent of semantic similarity to a reference image, and different manipulation tasks such as semantically-controlled inpainting and compositing; all achieved with the same model, with no further training.
View details
Semantic Pyramid for Image Generation
Assaf Shocher
Yossi Gandelsman
Michal Irani
Proc. IEEE Computer Vision and Pattern Recognition (CVPR) (2020)
Preview abstract
We present a novel GAN-based model that utilizes the space of deep features learned by a pre-trained classification model. Inspired by classical image pyramid representations, we construct our model as a Semantic Generation Pyramid - a hierarchical framework which leverages the continuum of semantic information encapsulated in such deep features; this ranges from low level information contained in fine features to high level, semantic information contained in deeper features. More specifically, given a set of features extracted from a reference image, our model generates diverse image samples, each with matching features at each semantic level of the classification model. We demonstrate that our model results in a versatile and flexible framework that can be used in various classic and novel image generation tasks. These include: generating images with a controllable extent of semantic similarity to a reference image, and different manipulation tasks such as semantically-controlled inpainting and compositing; all achieved with the same model, with no further training.
View details