Jump to Content

Using generative AI to investigate medical imagery models and datasets

Charles Lau
Chloe Nichols
Doron Yaya-Stupp
Heather Cole-Lewis
Ilana Traynis
https://arxiv.org/ (2022)
Google Scholar


AI models have shown promise in performing many medical imaging tasks. However, our ability to explain what signals these models learn from the training data is severely lacking. Explanations are needed in order to increase the trust of doctors in AI-based models, especially in domains where AI prediction capabilities surpass those of humans. Moreover, such explanations could enable novel scientific discovery by uncovering signals in the data that aren’t yet known to experts. In this paper, we present a method for automatic visual explanations that can help achieve these goals by generating hypotheses of what visual signals in the images are correlated with the task. We propose the following 4 steps: (i) Train a classifier to perform a given task to assess whether the imagery indeed contains signals relevant to the task; (ii) Train a StyleGAN-based image generator with an architecture that enables guidance by the classifier (“StylEx”); (iii) Automatically detect and extract the top visual attributes that the classifier is sensitive to. Each of these attributes can then be independently modified for a set of images to generate counterfactual visualizations of those attributes (i.e. what that image would look like with the attribute increased or decreased); (iv) Present the discovered attributes and corresponding counterfactual visualizations to a multidisciplinary panel of experts to formulate hypotheses for the underlying mechanisms with consideration to social and structural determinants of health (e.g. whether the attributes correspond to known patho-physiological or socio-cultural phenomena, or could be novel discoveries) and stimulate future research. To demonstrate the broad applicability of our approach, we demonstrate results on eight prediction tasks across three medical imaging modalities – retinal fundus photographs, external eye photographs, and chest radiographs. We showcase examples where many of the automatically-learned attributes clearly capture clinically known features (e.g., types of cataract, enlarged heart), and demonstrate automatically-learned confounders that arise from factors beyond physiological mechanisms (e.g., chest X-ray underexposure is correlated with the classifier predicting abnormality, and eye makeup is correlated with the classifier predicting low hemoglobin levels). We further show that our method reveals a number of physiologically plausible novel attributes for future investigation (e.g., differences in the fundus associated with self-reported sex, which were previously unknown). While our approach is not able to discern causal pathways, the ability to generate hypotheses from the attribute visualizations has the potential to enable researchers to better understand, improve their assessment, and extract new knowledge from AI-based models. Importantly, we highlight that attributes generated by our framework can capture phenomena beyond physiology or pathophysiology, reflecting the real world nature of healthcare delivery and socio-cultural factors, and hence multidisciplinary perspectives are critical in these investigations. Finally, we release code to enable researchers to train their own StylEx models and analyze their predictive tasks of interest, and use the methodology presented in this paper for responsible interpretation of the revealed attributes.

Research Areas