Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 11125 publications
Preview abstract
This article delves into how Google Site Reliability Engineers (SREs) leverage Gemini 3 and the Gemini CLI to aggressively reduce Mean Time to Mitigation (MTTM) during real-world outages. By focusing on the SRE motto of "Eliminate Toil," the article walks through a simulated incident, demonstrating how an agentic CLI acts as a human-in-the-loop copilot across the entire incident lifecycle: from initial paging and investigation, through safe, tool-driven mitigation and root cause analysis, to automated postmortem generation and action item filing. This direct integration of Gemini's reasoning capabilities with operational data and internal tools creates a virtuous cycle where past incident learnings continuously inform and improve future solutions.
View details
ARM MTE Performance in Practice
Preview
Taehyun Noh
Yingchen Wang
Tal Garfinkel
Mahesh Madhav
Mattan Erez
Shravan Narayan
Usenix Security (2026)
The Ontic-Epistemic Distinction: Implications for Robust Machine Intelligence
Shreya Ishita
Master's Thesis (2026) (to appear)
Preview abstract
The current pursuit of robust Machine Intelligence is largely predicated on a substrate independent, functionalist view of cognition, where sufficiently large syntactic processing is expected to eventually yield semantic understanding. This paper explores the ontological distinctions between these computational frameworks and biological cognition, specifically regarding the emergence of robustness. By analyzing phenomena such as the "reversal curse" and performance on novel reasoning benchmarks (e.g., ARC-AGI), I examine whether current limitations are transient artifacts of scale or indicative of a distinct architectural category.
Synthesizing Stevan Harnad’s "Symbol Grounding Problem" with Evan Thompson’s framework of Intrinsic Normativity in autopoietic systems, I argue that true generality requires "Sense-Making", a process distinct from "Information Processing", whereby an agent’s internal states are causally coupled with its environment via survival or system wide stakes. Without this intrinsic normativity, machines may remain epistemic instruments rather than ontic agents. By defining this "Ontic Gap," this paper offers a theoretical lens for evaluating AI safety and governance, moving beyond behavioral simulation to address the structural conditions of understanding.
View details
Preview abstract
Audio Description ( AD) provides essential access to visual media for blind and low vision ( BLV) audiences. Yet current AD production tools remain largely inaccessible to BLV video creators, who possess valuable expertise but face barriers due to visually- driven interfaces. We present ADCanvas, a multimodal authoring system that supports non- visual control
over audio description ( AD) creation. ADCanvas combines conversational interaction with keyboard- based playback control and a plain- text, screen reader–
accessible editor to support end- to- end AD authoring and visual question answering ( VQA). Combining screen- reader- friendly controls with a multimodal
LLM agent, ADCanvas supports live VQA, script generation, and AD modification. Through a user study with 12 BLV video creators, we find that users adopt
the conversational agent as an informational aide and drafting assistant, while maintaining agency through verification and editing. For example, participants
saw themselves as curators who received information from the model and filtered it down for their audience. Our findings offer design implications for
accessible media tools, including precise editing controls, accessibility support for creative ideation, and configurable rules for human- AI collaboration.
View details
SNPeek: Side-Channel Analysis for Privacy Applications on Confidential VMs
Ruiyi Zhang
Albert Cheu
Adria Gascon
Michael Schwarz
Octavian Suciu
Network and Distributed System Security (NDSS) (2026)
Preview abstract
Confidential virtual machines (CVMs) based on trusted execution environments (TEEs) enable new privacy-preserving solutions. But CVMs are not a privacy panacea, as they are vulnerable to side-channel attacks that may compromise confidentially of workloads.
In this work, we develop the FARFETCH’D framework to help developers evaluate side-channel assisted privacy attacks that are broadly applicable to CVMs. The privacy reduction due to these attacks heavily depend on the execution environment and the workload, which varies vastly:What are avail-able attack primitives? How does the particular privacy work-load behave?This makes manual investigation and efficiently mitigating software-based side channels a cumbersome and impossible task. FARFETCH’D solves this challenge by providing a set of configurable attack primitives that can execute on real CVM hardware and automated ML-based analysis pipelines. We evaluate the effectiveness of FARFETCH’D on privacy-preserving workloads. Our results show that our approach is effective at pinpointing the vulnerability of privacy apps against side channels and help evaluating mitigation based on oblivious memory and differential privacy.
View details
Preview abstract
How many T gates are needed to approximate an arbitrary n-qubit quantum state to within
a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the
optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary
diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of
single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary
single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to
approximate just one single-qubit unitary.
View details
Preview abstract
Responsive user interfaces enable dynamically adjusting user interfaces based on device-specific aspects such as screen size, aspect ratio, display resolution, etc. However, traditional responsive design fails to account for different types of constraints of a user and task criticality of the task being performed via the UI. Misalignment between the UI design, user context and task criticality can lead to user error. This disclosure describes techniques, implemented with user permission, for dynamically modifying the layout, information density, and/or interactive physics of a user interface based on a dual-factor analysis of user cognitive state and task criticality. The user's cognitive state can be inferred from behavioral telematics. Task criticality can be inferred from semantic analysis. The information density and other parameters of a user interface are automatically adjusted based on such analyses. Such adjustments include applying or relaxing restrictions on interactivity and adjusting visual prominence of various UI elements to adjust the information density of the user interface. The adjustments can also include adjusting friction as appropriate, hiding certain aspects of the user interface, or other types of adjustments.
View details
Preview abstract
Modern user interfaces are complex composites, with elements originating from various sources, such as the operating system, apps, a web browser, or websites. Many security and privacy models implicitly depend on users correctly identifying an element's source, a concept we term ''surface attribution.'' Through two large-scale vignette-based surveys (N=4,400 and N=3,057), we present the first empirical measurement of this ability.
We find that users struggle, correctly attributing UI source only 55% of the time on desktop and 53% on mobile. Familiarity and strong brand cues significantly improve accuracy, whereas UI positioning, a long-held security design concept especially for browsers, has minimal impact. Furthermore, simply adding a ''Security & Privacy'' brand cue to Android permission prompts failed to improve attribution. These findings demonstrate a fundamental gap in users' mental models, indicating that relying on them to distinguish trusted UI is a fragile security paradigm.
View details
Preview abstract
The advent of 3D Gaussian Splatting has revolutionized graphics rendering by offering high visual quality and fast rendering speed. However, training large-scale scenes at high quality remains challenging due to the substantial memory demands required to store Gaussians and optimizer states. To address these limitations, we propose GS-Offload, fast and memory-efficient training system for 3D Gaussian Splatting. GS-Offload stores Gaussians and optimizer states in host memory and selectively transfer only the necessary data to GPU memory on demand, significantly reducing GPU memory usage. With carefully designed software pipelining and CPU-side optimizer acceleration, GS-Offload achieves training speed near that of GPU-only setups, while significantly lowering GPU memory demands.
View details
`It’s still abuse’: Community attitudes and perceptions on AI-generated image-based sexual abuse
Nicola Henry
Gemma Beard
Lisa Given
Information, Communication, & Society (2026)
Preview abstract
There are growing concerns about AI-generated image-based sexual abuse (AI-IBSA), also known as nonconsensual sexualized ′deepfakes.′ Empirical research on AI-IBSA, however, remains very limited. This study surveyed 7231 respondents across Australia, the United Kingdom, and the United States to investigate community attitudes and perceptions on AI-IBSA. Through a vignette study, we explored the relationship between public familiarity with AI-IBSA, normative concerns about consent, and context-dependent judgments that vary based on the target's identity relational status, and how the content was used. Our findings reveal strong condemnation of AI-IBSA, yet respondents demonstrated low familiarity with the technology and their views varied depending on particular contexts. AI-IBSA targeting intimate partners was viewed as more unacceptable than targeting celebrities, and content created solely for personal use was seen as less unacceptable than content intended for distribution. The study highlights the need for approaches that go beyond technical fixes and punitive measures, advocating for a multifaceted response that integrates ethical data governance, digital sexual literacy, and restorative justice approaches.
View details
VISTA: Towards Test-Time Self-Improving Video Generation Agent
Hootan Nakhost
Xuan Long Do
The IEEE/CVF Conference on Computer Vision and Pattern Recognition (to appear) (2026)
Preview abstract
Despite rapid advances in text-to-video (T2V) synthesis, generated video quality remains critically dependent on precise user prompts. Existing test-time optimization methods, successful in other domains, struggle with the multi-faceted nature of video. To address this, we introduce VISTA, a novel multi-agent system that autonomously refines prompts to improve video generation. VISTA operates in an iterative loop, first decomposing a user's idea into a structured temporal plan. After generation, the best video is identified through a robust pairwise tournament. This winning video is then critiqued by a trio of specialized agents focusing on visual, audio, and contextual fidelity. Finally, a reasoning agent synthesizes this feedback to introspectively rewrite and enhance the prompt for the next generation cycle. To rigorously evaluate our proposed approach, we introduce MovieGen-Bench, a new benchmark of diverse single- and multi-scene video generation tasks. Experiments show that while prior methods yield inconsistent gains, VISTA consistently improves video quality, achieving up to 60% pairwise win rate against state-of-the-art baselines. Human evaluators concur, preferring VISTA's outputs in 68% of comparisons.
View details
ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
Sunny Rajagopalan
Alireza Golestaneh
Shubhra Chandra
Min Zhou
Jonathan Vronsky
Songbai Yan
2026
Preview abstract
We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs.
View details
Preview abstract
For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step.
View details
Preview abstract
Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL?
In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy.
We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data.
We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL.
Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL.
In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL.
View details
Preview abstract
Generative AI is reshaping software development, yet its psychological impact remains under-researched. During May and August 2025 we conducted reflexive thematic analysis of interviews with 12 senior engineers (≥5 years experience) recruited from Western technology hubs to explore shifts in professional identity. We identify a central transition from "coder to conductor," where AI acts as a cognitive partner. Key findings include: (1) a re-architecting of focus from implementation to strategy; (2) a shift in productivity metrics from output to impact; and (3) a dual-impact on agency, where AI empowers autonomy but threatens competence through de-skilling anxieties. These findings suggest that as implementation becomes commoditised, organisational training and career progression must prioritise architectural mastery and metacognitive oversight to ensure sustained developer motivation and system integrity.
View details