Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11079 publications
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    Preview abstract Online scams are a growing threat in India, impacting millions and causing substantial financial losses year over year. This white paper presents ShieldUp!, a novel mobile game prototype designed to inoculate users against common online scams by leveraging the principles of psychological inoculation theory. ShieldUp! exposes users to weakened versions of manipulation tactics frequently used by scammers, and teaches them to recognize and pre-emptively refute these techniques. A randomized controlled trial (RCT) with 3,000 participants in India was conducted to evaluate the game's efficacy in helping users better identify scams scenarios. Participants were assigned to one of three groups: the ShieldUp! group (play time: 15 min), a general scam awareness group (watching videos and reading tips for 10-15 min), and a control group (plays "Chrome Dino", an unrelated game, for 10 minutes). Scam discernment ability was measured using a newly developed Scam Discernment Ability Test (SDAT-10) before the intervention, immediately after, and at a 21-day follow-up. Results indicated that participants who played ShieldUp! showed a significant improvement in their ability to identify scams compared to both control groups, and this improvement was maintained at follow-up. Importantly, while both interventions initially led users to to show increased skepticism towards even genuine online offers (NOT Scam scenarios), this effect dissipated after 21 days, suggesting no long-term negative impact on user trust. This study demonstrates the potential of game-based inoculation as a scalable and effective scam prevention strategy, offering valuable insights for product design, policy interventions, and future research, including the need for longitudinal studies and cross-cultural adaptations. View details
    LeakyFeeder: In-Air Gesture Control Through Leaky Acoustic Waves
    Yongjie Yang
    Tao Chen
    Zhenlin An
    Shirui Cao
    Shangguan Longfei
    SenSys 2025 - The 23rd ACM Conference on Embedded Networked Sensor Systems (2025)
    Preview abstract We present LeekyFeeder, a mobile application that explores the acoustic signals leaked from headphones to reconstruct gesture motions around the ear for fine-grained gesture control. To achieve this goal, LeekyFeeder reuses the speaker and feed-forward microphones on active noise cancellation (ANC) headphones as a SONAR system, emitting an inaudible frequency-modulated continuous-wave (FMCW) signal to track gesture reflections over time. Since this single-receiver SONAR system is unable to differentiate reflection angles and further disentangle signal reflections from different gesture parts, we draw on principles of multi-modal learning to frame gesture motion reconstruction as a multi-modal translation task and propose a deep learning-based approach to fill the information gap between low-dimensional FMCW ranging readings and high-dimensional 3D hand movements. We implement LeekyFeeder on a pair of Google Pixel Buds and conduct experiments to examine the efficacy and robustness of LeekyFeeder in various conditions. Experiments based on six gesture types inspired by Apple Vision Pro demonstrate that LeekyFeeder achieves a PCK performance of 89% at 3cm across ten users, with an average MPJPE and MPJRPE error of 2.71cm and 1.88cm, respectively. View details
    Preview abstract As public policy advances the rights of people with disabilities, and as corporations begin to recognize disabled people as core market segments, industry practice in accessible technology design and development improves day by day. Yet, as with other research domains there are lags and gaps in the implementation of accessibility between the lab and industry practice. In this panel, we describe multiple barriers to collaboration between academia and industry and how these barriers manifest as issues in implementation of research findings in industry and lack of adoption of best practices in academia, and vice versa. We then discuss how these specific cases complicate the imagined divide between academic and industry approaches to accessibility. How can notions of accessibility be expanded in both contexts to include overlooked dimensions like ethics, dark patterns, and cognition? This discussion moves towards more inclusive, impactful, and actionable accessibility practices across industry, academia, and public policy. View details
    A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs
    Lukas Zierahn
    Tal Lancewicki
    Dirk van der Hoeven
    Nicolo Cesa-Bianchi
    Journal of Machine Learning Research (JMLR), 26 (2025), pp. 1-60
    Preview abstract We derive a new analysis of Follow The Regularized Leader (FTRL) for online learning with delayed bandit feedback. By separating the cost of delayed feedback from that of bandit feedback, our analysis allows us to obtain new results in three important settings. On the one hand, we derive the first optimal (up to logarithmic factors) regret bounds for combinatorial semi-bandits with delay and adversarial Markov decision processes with delay (both known and unknown transition functions). On the other hand, we use our analysis to derive an efficient algorithm for linear bandits with delay achieving near-optimal regret bounds. We also show that FTRL remains stable across multiple rounds under mild assumptions on the the regularizer. View details
    The vast world of quantum advantage
    Robert Huang
    John Preskill
    Soonwon Choi
    ArXiv (2025)
    Preview abstract The quest to identify quantum advantages, where quantum physics truly outperforms classical physics, lies at the heart of quantum technology. While quantum devices promise extraordinary capabilities, from exponential computational speedups to unprecedented measurement precision, distinguishing genuine advantages from mere illusions remains a formidable challenge. In this endeavor, quantum theorists are like prophets trying to foretell a future where quantum technologies reign supreme. Yet, the boundary between visionary insight and unfounded fantasy is perilously thin. In this perspective, we explore the properties defining an ideal quantum advantage and examine our mathematical tools for navigating the vast world of quantum advantages across computation, learning, sensing, communication, and beyond. We show that some quantum advantages are inherently unpredictable using classical resources alone, suggesting a landscape far richer than what we can currently foresee. While mathematical rigor remains our indispensable guide in this exploration, the ultimate power of quantum technologies may emerge from the quantum advantages we cannot yet conceive. View details
    Preview abstract Measuring software development can help drive impactful change. However, it’s a complex task, and getting started can be daunting as it involves understanding what you should measure, and determining what you can measure. This article provides a guide to selecting a framework that aligns with organizational measurement strategy. View details
    Preview abstract We propose a principled method to synthesize high-quality multi-turn function calling trajectories to align large language model (LLM)-based agents. We start with iteratively building function calling graph and defining node operations to increase its complexity. This enables us to construct reliable reference. Then, based on the synthesized function calling graph, we adopt back-and-forth translation to first construct multi-turn user queries and then, fill in the function arguments with information in the query. We sample positive trajectories that distill the function graph reference and negative trajectories that contrast with the positive trajectories in targeted loss patterns in multi-turn scenarios. Training with the positive trajectories with supervised fine-tuning and preference optimization against negative trajectories, we obtain 67.42 on BFCL and 71.7 on ToolQuery with an open-sourced model with 14B parameters, surpassing the performance of strong proprietary models like o1. View details
    ×