Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 346 publications
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Marc Stogaitis
Tajinder Gadh
Richard Allen
Alexei Barski
Robert Bosch
Patrick Robertson
Youngmin Cho
Nivetha Thiruverahan
Aman Raj
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
Unprecedented Insights into Maternal Sleep: A Large-scale Longitudinal Analysis of Real-world Wearable Device Data Before, During, and After Pregnancy
Nichole Young-Lin
Conor Heneghan
Logan Schneider
Logan Niehaus
Ariel Haney
Karla Gleichauf
Jacqueline Shreibati
Belen Lafon
Lancet eBioMedicine (2025)
Preview abstract
Introduction: Current understanding of pregnancy and postpartum sleep is driven by limited lab or self-reported data. Consumer wearable devices may help reveal longitudinal, real-world sleep patterns.
Methods: We analyzed de-identified wearable device data from 2,540 users in the United States and Canada who met strict wear-time requirements (≥80% daily usage for ≥80% of the time periods of interest [12 weeks prepregnancy, throughout pregnancy, and 20 weeks immediately postpartum]). We tracked sleep time and staging using Fitbit devices.
Results: Compared to prepregnancy, total sleep time (TST) increased from an average of 425.3±43.5 min to a peak of 447.6±47.6 min at gestational week 10 with ongoing declines throughout pregnancy. Time in bed (TIB) followed a similar pattern. Increased light sleep drove the initial TST rise. Deep and REM sleep decreased significantly throughout pregnancy, with maximum reductions of 19.2±13.8 min (p<0.01) and 9.0±19.2 min (p<0.01) respectively by pregnancy end. Sleep efficiency also declined slightly during pregnancy (median drop from 88.3% to 86.8%). After delivery, TIB remained below the prepregnancy baseline by 14.7±45.7 min at one year postpartum and 15.2±47.7 min at 1.5 years postpartum.
Conclusion: This unprecedented look at large-scale, real-world sleep and pregnancy patterns revealed a previously unquantified initial increase in sleep followed by decreases in both quantity and quality as pregnancy progresses. Sleep deficits persist for at least 1.5 years postpartum. These quantified trends can assist clinicians and patients in understanding what to expect.
View details
Preview abstract
This tutorial examines the progress and scaling limitations of IM-DD based optical technologies and explores how datacenter use cases optimized coherent technology, including a newly proposed polarization-folding, time-diversity approach and a novel single-sideband coherent detection technology—can address some of these challenges
View details
Preview abstract
As part of Google's ongoing efforts to define best practices for secure AI systems, we’re sharing our aspirational framework for secure AI agents. We advocate for a hybrid, defense-in-depth strategy that combines the strengths of traditional, deterministic security controls with dynamic, reasoning-based defenses. This approach is grounded in three core principles: agents must have well-defined human controllers, their powers must be carefully limited, and their actions and planning must be observable. This paper reflects our current thinking and the direction of our efforts as we work towards ensuring that AI agents can be powerful, useful, and secure by default.
View details
Quantum Computation of Stopping power for Inertial Fusion Target Design
Dominic Berry
Alina Kononov
Alec White
Joonho Lee
Andrew Baczewski
Proceedings of the National Academy of Sciences, 121 (2024), e2317772121
Preview abstract
Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it - one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quantum 2, 040332 2021], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with a novel implementation of a high order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with
roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoCo or P450.
View details
Preview abstract
Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks. Accurate and timely warnings are critical for mitigating flood risks, but hydrological simulation models typically must be calibrated to long data records in each watershed. Here we show that AI-based forecasting achieves reliability in predicting extreme riverine events in ungauged watersheds at up to a 5-day lead time that is similar to or better than the reliability of nowcasts (0-day lead time) from a current state of the art global modeling system (the Copernicus Emergency Management Service Global Flood Awareness System). Additionally, we achieve accuracies over 5-year return period events that are similar to or better than current accuracies over 1-year return period events. This means that AI can provide flood warnings earlier and over larger and more impactful events in ungauged basins. The model developed in this paper was incorporated into an operational early warning system that produces publicly available (free and open) forecasts in real time in over 80 countries. This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.
View details
A scalable system to measure contrail formation on a per-flight basis
Erica Brand
Sebastian Eastham
Carl Elkin
Thomas Dean
Zebediah Engberg
Ulrike Hager
Ian Langmore
Joe Ng
Dinesh Sanekommu
Marc Shapiro
Environmental Research Communications (2024)
Preview abstract
In this work we describe a scalable, automated system to determine from satellite data whether a given flight has made a persistent contrail.
The system works by comparing flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a `flight matching' algorithm and use it to label each flight segment as a `match' or `non-match'. We perform this analysis on 1.6 million flight segments and compare these labels to existing contrail prediction methods based on weather forecast data. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We find that current contrail prediction models fail to correctly predict whether we will match a contrail in many cases.
View details
Preview abstract
This is an invited OFC 2024 conference workshop talk regarding a new type of lower-power datacenter optics design choice: linear pluggable optics. In this talk I will discuss the fundamental performance constraints facing linear pluggable optics and their implications on DCN and ML use cases
View details
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Trond Andersen
Rhine Samajdar
Andre Petukhov
Jesse Hoke
Dmitry Abanin
ILYA Drozdov
Xiao Mi
Alexis Morvan
Charles Neill
Rajeev Acharya
Richard Ross Allen
Kyle Anderson
Markus Ansmann
Frank Arute
Kunal Arya
Abe Asfaw
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Juan Campero
Hung-Shen Chang
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Agustin Di Paolo
Andrew Dunsworth
Clint Earle
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Austin Fowler
Brooks Foxen
Gonzalo Garcia
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Alejo Grajales Dau
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Gordon Hill
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Salvatore Mandra
Orion Martin
Steven Martin
Seneca Meeks
Amanda Mieszala
Shirin Montazeri
Ramis Movassagh
Wojtek Mruczkiewicz
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Seun Omonije
Alex Opremcak
Rebecca Potter
Leonid Pryadko
David Rhodes
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Vlad Sivak
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Doug Thor
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Vedika Khemani
Sarang Gopalakrishnan
Tomaž Prosen
Science, 384 (2024), pp. 48-53
Preview abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
View details
Stable quantum-correlated many-body states through engineered dissipation
Xiao Mi
Alexios Michailidis
Sara Shabani
Jerome Lloyd
Rajeev Acharya
Igor Aleiner
Trond Andersen
Markus Ansmann
Frank Arute
Kunal Arya
Abe Asfaw
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Charina Chou
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Alejo Grajales Dau
Dripto Debroy
Agustin Di Paolo
ILYA Drozdov
Andrew Dunsworth
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Austin Fowler
Brooks Foxen
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Kostyantyn Kechedzhi
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Orion Martin
Amanda Mieszala
Shirin Montazeri
Alexis Morvan
Ramis Movassagh
Wojtek Mruczkiewicz
Charles Neill
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Alex Opremcak
Andre Petukhov
Rebecca Potter
Leonid Pryadko
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Dmitry Abanin
Science, 383 (2024), pp. 1332-1337
Preview abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
View details
SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models
John Anderson
Science Advances, 10 (2024), eadk4489
Preview abstract
Probabilistic forecasting is crucial to decision-making under uncertainty about future weather. The dominant approach is to use an ensemble of forecasts to represent and quantify uncertainty in operational numerical weather prediction. However, generating ensembles is computationally costly. In this paper, we propose to generate ensemble forecasts at scale by leveraging recent advances in generative artificial intelligence. Our approach learns a data-driven probabilistic diffusion model from the 5-member ensemble GEFS reforecast dataset. The model can then be sampled efficiently to produce realistic weather forecasts, conditioned on a few members of the operational GEFS forecasting system. The generated ensembles have similar predictive skill as the full GEFS 31-member ensemble, evaluated against ERA5 reanalysis, and emulate well the statistics of large physics-based ensembles. We also apply the same methodology to developing a diffusion model for generative post-processing: the model directly learns to correct biases present in the emulated forecasting system by leveraging reanalysis data as labels during training. Ensembles from this generative post-processing model show greater reliability and accuracy, particularly in extreme event classification. In general, they are more reliable and forecast the probability of extreme weather more accurately than the GEFS operational ensemble. Our models achieve these results at less than 1/10th of the computational cost incurred by the operational GEFS system.
View details
Ubiquitous and Low-Cost Generation of Elevation Pseudo Ground Control Points
Etienne Le Grand
Moustafa Youssef
14th International Conference on Indoor Positioning and Indoor Navigation (IPIN). Hong Kong, China, 2024.
Preview abstract
In this paper, we design a system to generate Pseudo Ground Control Points (PGCPs) using standard low-cost widely available GNSS receivers in a crowd-sourcing manner. We propose a number of GNSS points filters that removes different causes of errors and biases, and design a linear regression height estimator leading to high-accuracy PGCP elevations. Evaluation of our system shows that the PGCPs can achieve a median accuracy of 22.5 cm in 25 metropolitan areas in the USA.
View details
Beyond The Code: AI Regulations As The Secret Compass Of Engineering Managers
Proceedings of the American Society for Engineering Management 2024 International Annual Conference (2024)
Preview abstract
Technology is a product of society. As technology evolves, the norms governing it have to mature for enabling its proper use within the society. The interest in Artificial Intelligence (AI) has surged following the introduction of chatGPT. Firms, both large and small, are competing to develop new products and solutions involving AI. Amidst these developments, leading corporations such as Google and Microsoft have proactively committed to upholding responsible innovation in AI development. Governments worldwide are responding with the creation of guidelines and regulations in the field. Notably, in March 2024, the United Nations General Assembly (UNGA) adopted landmark regulation on AI.
At the heart of these developments in AI are engineering managers who leverage technical advances to build products and services that create value. To effectively harness AI for human benefit, engineering managers must be aware of these evolving regulations governing AI. Some regulations such as Digital Markets Act (DMA) and General Data Protection Regulations (GDPR) have far reaching consequences for organizations globally. Having a working knowledge of these statutory requirements will enable engineering managers to identify the opportunities and constraints in leveraging AI technology while building products and services. It will allow them to make informed decisions about data collection methods, model training processes, the deployment of AI systems and metrics for their evaluation. At scale, it can become a competitive advantage for the firms they work in, as explored through real-world examples in this paper.
View details
Preview abstract
The emergence of Large Language Models (LLMs), has opened exciting possibilities for constructing computational simulations designed to replicate human behavior accurately. Current research suggests that LLM-based agents become increasingly human-like in their performance, sparking interest in using these AI agents as substitutes for human participants in behavioral studies. However, LLMs are complex statistical learners without straightforward deductive rules, making them prone to unexpected behaviors. Hence, it is crucial to study and pinpoint the key behavioral distinctions between humans and LLM-based agents. In this study, we highlight the limitations of LLMs in simulating human interactions, particularly focusing on LLMs' ability to simulate political debates on topics that are important aspects of people's day-to-day lives and decision-making processes. Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases despite being directed to debate from certain political perspectives. This tendency results in behavioral patterns that seem to deviate from well-established social dynamics among humans. We reinforce these observations using an automatic self-fine-tuning method, which enables us to manipulate the biases within the LLM and demonstrate that agents subsequently align with the altered biases. These results underscore the need for further research to develop methods that help agents overcome these biases, a critical step toward creating more realistic simulations.
View details
Preview abstract
Generative AI models, including large language models and multimodal models that include text and other media, are on the cusp of transforming many aspects of modern life, including entertainment, education, civic life, the arts, and a range of professions. There is potential for Generative AI to have a substantive impact on the methods and pace of discovery for a range of scientific disciplines. We interviewed twenty scientists from a range of fields (including the physical, life, and social sciences) to gain insight into whether or how Generative AI technologies might add value to the practice of their respective disciplines, including not only ways in which AI might accelerate scientific discovery (i.e., research), but also other aspects of their profession, including the education of future scholars and the communication of scientific findings. In addition to identifying opportunities for Generative AI to augment scientists’ current practices, we also asked participants to reflect on concerns about AI. These findings can help guide the responsible development of models and interfaces for scientific education, inquiry, and communication.
View details