Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 567 publications
Preview abstract
Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error.
View details
Quartic Quantum Speedups for Planted Inference Problems
Alexander Schmidhuber
Ryan O'Donnell
Physical Review X, 15 (2025), pp. 021077
Preview abstract
We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks.
View details
Security Signals: Making Web Security Posture Measurable At Scale
David Dworken
Artur Janc
Santiago (Sal) Díaz
Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb)
Preview abstract
The area of security measurability is gaining increased attention, with a wide range of organizations calling for the development of scalable approaches for assessing the security of software systems and infrastructure. In this paper, we present our experience developing Security Signals, a comprehensive system providing security measurability for web services, deployed in a complex application ecosystem of thousands of web services handling traffic from billions of users. The system collects security-relevant information from production HTTP traffic at the reverse proxy layer, utilizing novel concepts such as synthetic signals augmented with additional risk information to provide a holistic view of the security posture of individual services and the broader application ecosystem. This approach to measurability has enabled large-scale security improvements to our services, including prioritized rollouts of security enhancements and the implementation of automated regression monitoring. Furthermore, it has proven valuable for security research and prioritization of defensive work. Security Signals addresses shortcomings of prior web measurability proposals by tracking a comprehensive set of security properties relevant to web applications, and by extracting insights from collected data for use by both security experts and non-experts. We believe the lessons learned from the implementation and use of Security Signals offer valuable insights for practitioners responsible for web service security, potentially inspiring new approaches to web security measurability.
View details
Optimization by Decoded Quantum Interferometry
Stephen Jordan
Noah Shutty
Mary Wootters
Alexander Schmidhuber
Robbie King
Sergei Isakov
Nature, 646 (2025), 831–836
Preview abstract
Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems.
View details
Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
Dominic Berry
Yu Tong
Alec White
Tae In Kim
Lin Lin
Seunghoon Lee
Garnet Chan
PRX Quantum, 6 (2025), pp. 020327
Preview abstract
Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the FeMo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system.
View details
Preview abstract
We present PhoMoH, a neural network methodology to construct generative models of photo-realistic 3D geometry and appearance of human heads including hair, beards, an oral cavity, and clothing. In contrast to prior work, PhoMoH models the human head using neural fields, thus supporting complex topology. Instead of learning a head model from scratch, we propose to augment an existing expressive head model with new features. Concretely, we learn a highly detailed geometry network layered on top of a mid-resolution head model together with a detailed, local geometry-aware, and disentangled color field. Our proposed architecture allows us to learn photo-realistic human head models from relatively little data. The learned generative geometry and appearance networks can be sampled individually and enable the creation of diverse and realistic human heads. Extensive experiments validate our method qualitatively and across different metrics.
View details
Hierarchical Text Spotter for Joint Text Spotting and Layout Analysis
Winter Conference on Applications of Computer Vision 2024 (2024) (to appear)
Preview abstract
We propose Hierarchical Text Spotter (HTS), the first method for the joint task of word-level text spotting and geometric layout analysis.
HTS can annotate text in images with a hierarchical representation of 4 levels: character, word, line, and paragraph.
The proposed HTS is characterized by two novel components:
(1) a Unified-Detector-Polygon (UDP) that produces Bezier Curve polygons of text lines and an affinity matrix for paragraph grouping between detected lines;
(2) a Line-to-Character-to-Word (L2C2W) recognizer that splits lines into characters and further merges them back into words.
HTS achieves state-of-the-art results on multiple word-level text spotting benchmark datasets as well as geometric layout analysis tasks.
Code will be released upon acceptance.
View details
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
Dominic W. Berry
Yuan Su
Casper Gyurik
Robbie King
Joao Basso
Abhishek Rajput
Nathan Wiebe
Vedran Djunko
PRX Quantum, 5 (2024), pp. 010319
Preview abstract
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers in persistent homology (a way of characterizing topological features of data sets). Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples for which super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve some seemingly classically intractable instances.
View details
50 Shades of Support: A Device-Centric Analysis of Android Security Updates
Abbas Acar
Esteban Luques
Harun Oz
Ahmet Aris
Selcuk Uluagac
Network and Distributed System Security (NDSS) Symposium (2024)
Preview abstract
Android is by far the most popular OS with over
three billion active mobile devices. As in any software, uncovering
vulnerabilities on Android devices and applying timely patches
are both critical. Android Open Source Project (AOSP) has
initiated efforts to improve the traceability of security updates
through Security Patch Levels (SPLs) assigned to devices. While
this initiative provided better traceability for the vulnerabilities,
it has not entirely resolved the issues related to the timeliness
and availability of security updates for end users. Recent studies
on Android security updates have focused on the issue of delay
during the security update roll-out, largely attributing this to
factors related to fragmentation. However, these studies fail to
capture the entire Android ecosystem as they primarily examine
flagship devices or do not paint a comprehensive picture of the
Android devices’ lifecycle due to the datasets spanning over a
short timeframe. To address this gap in the literature, we utilize
a device-centric approach to analyze the security update behavior
of Android devices. Our approach aims to understand the security
update distribution behavior of OEMs (e.g., Samsung) by using
a representative set of devices from each OEM and characterize
the complete lifecycle of an average Android device. We obtained
367K official security update records from public sources, span-
ning from 2014 to 2023. Our dataset contains 599 unique devices
from four major OEMs that are used in 97 countries and are
associated with 109 carriers. We identify significant differences
in the roll-out of security updates across different OEMs, device
models/types, and geographical regions across the world. Our
findings show that the reasons for the delay in the roll-out of
security updates are not limited to fragmentation but also involve
OEM-specific factors. Our analysis also uncovers certain key
issues that can be readily addressed as well as exemplary practices
that can be immediately adopted by OEMs in practice.
View details
MetaMix: Meta-state Precision Searcher for Mixed-precision Activation Quantization
Han-Byul Kim
Joo Hyung Lee
Sungjoo Yoo
Hong-Seok Kim
Proc. The 38th Annual AAAI Conference on Artificial Intelligence (AAAI) (2024)
Preview abstract
Mixed-precision quantization of efficient networks often suffer from activation instability encountered in the exploration of bit selections. To address this problem, we propose a novel method called MetaMix which consists of bit selection and weight training phases. The bit selection phase iterates two steps, (1) the mixed-precision-aware weight update, and (2) the bit-search training with the fixed mixed-precision-aware weights, both of which combined reduce activation instability in mixed-precision quantization and contribute to fast and high-quality bit selection. The weight training phase exploits the weights and step sizes trained in the bit selection phase and fine-tunes them thereby offering fast training. Our experiments with efficient and hard-to-quantize networks, i.e., MobileNet v2 and v3, and ResNet-18 on ImageNet show that our proposed method pushes the boundary of mixed-precision quantization, in terms of accuracy vs. operations, by outperforming both mixed- and single-precision SOTA methods.
View details
SPHEAR: Spherical Head Registration for Complete Statistical 3D Modeling
Andrei Zanfir
Teodor Szente
Mihai Zanfir
Cristian Sminchisescu
International Conference on 3D Vision (2024)
Preview abstract
We present SPHEAR, an accurate, differentiable parametric statistical 3D human head model, enabled by a novel 3D registration method based on spherical embeddings. We shift the paradigm away from the classical Non-Rigid Registration methods, which operate under various surface priors, increasing reconstruction fidelity and minimizing required human intervention. Additionally, SPHEAR is a complete model that allows not only to sample diverse synthetic head shapes and facial expressions, but also gaze directions, high-resolution color textures, surface normal maps, and hair cuts represented in detail, as strands. SPHEAR can be used for automatic realistic visual data generation, semantic annotation, and general reconstruction tasks. Compared to state-of-the-art approaches, our components are fast and memory efficient, and experiments support the validity of our design choices and the accuracy of registration, reconstruction and generation techniques.
View details
TextMesh: Generation of Realistic 3D Meshes From Text Prompts
Christina Tsalicoglou
Fabian Manhardt
Michael Niemeyer
3DV 2024 (2024)
Preview abstract
The ability to generate highly realistic 2D images from mere text prompts has recently made huge progress in terms of speed and quality, thanks to the advent of image diffusion models. Naturally, the question arises if this can be also achieved in the generation of 3D content from such text prompts. To this end, a new line of methods recently emerged trying to harness diffusion models, trained on 2D images, for supervision of 3D model generation using view dependent prompts. While achieving impressive results, these methods, however, have two major drawbacks. First, rather than commonly used 3D meshes, they instead generate neural radiance fields (NeRFs), making them impractical for most real applications. Second, these approaches tend to produce over-saturated models, giving the output a cartoonish looking effect. Therefore, in this work we propose a novel method for generation of highly realistic-looking 3D meshes. To this end, we extend NeRF to employ an SDF backbone, leading to improved 3D mesh extraction. In addition, we propose a novel way to finetune the mesh texture, removing the effect of high saturation and improving the details of the output 3D mesh.
View details
Preview abstract
We extend conformal prediction to control the expected value of any monotone loss function. The
algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal
prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from
computer vision and natural language processing demonstrate the usage of our algorithm to bound the
false negative rate, graph distance, and token-level F1-score.
View details
LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D Signals
Arjun Karpur
Guilherme Perrotta
Ricardo Martin-Brualla
Proc. 3DV'24 (2024) (to appear)
Preview abstract
Finding localized correspondences across different images of the same object is crucial to understand its geometry. In recent years, this problem has seen remarkable progress with the advent of deep learning-based local image features and learnable matchers. Still, learnable matchers often underperform when there exists only small regions of co-visibility between image pairs (i.e. wide camera baselines). To address this problem, we leverage recent progress in coarse single-view geometry estimation methods. We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks and enhances their capabilities by integrating noisy, estimated 3D signals to boost correspondence estimation. When integrating 3D signals into the matcher model, we show that a suitable positional encoding is critical to effectively make use of the low-dimensional 3D information. We experiment with two different 3D signals - normalized object coordinates and monocular depth estimates - and evaluate our method on large-scale (synthetic and real) datasets containing object-centric image pairs across wide baselines. We observe strong feature matching improvements compared to 2D-only methods, with up to +6% total recall and +28% precision at fixed recall. Additionally, we demonstrate that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs - up to 8.6% compared to the 2D-only approach.
View details
Wear's my Data? Understanding the Cross-Device Runtime Permission Model in Wearables
Doguhan Yeke
Muhammad Ibrahim
Habiba Farukh
Abdullah Imran
Antonio Bianchi
Z. Berkay Celik
IEEE Symposium on Security and Privacy (2024)
Preview abstract
Wearable devices are becoming increasingly important, helping us stay healthy and connected. There are a variety
of app-based wearable platforms that can be used to manage
these devices. The apps on wearable devices often work with a
companion app on users’ smartphones. The wearable device and
the smartphone typically use two separate permission models
that work synchronously to protect sensitive data. However, this
design creates an opaque view of the management of permission-
protected data, resulting in over-privileged data access without
the user’s explicit consent. In this paper, we performed the first
systematic analysis of the interaction between the Android and
Wear OS permission models. Our analysis is two-fold. First,
through taint analysis, we showed that cross-device flows of
permission-protected data happen in the wild, demonstrating
that 28 apps (out of the 150 we studied) on Google Play
have sensitive data flows between the wearable app and its
companion app. We found that these data flows occur without
the users’ explicit consent, introducing the risk of violating
user expectations. Second, we conducted an in-lab user study
to assess users’ understanding of permissions when subject to
cross-device communication (n = 63). We found that 66.7% of
the users are unaware of the possibility of cross-device sensitive
data flows, which impairs their understanding of permissions in
the context of wearable devices and puts their sensitive data at
risk. We also showed that users are vulnerable to a new class of
attacks that we call cross-device permission phishing attacks on
wearable devices. Lastly, we performed a preliminary study on
other watch platforms (i.e., Apple’s watchOS, Fitbit, Garmin
OS) and found that all these platforms suffer from similar
privacy issues. As countermeasures for the potential privacy
violations in cross-device apps, we suggest improvements in the
system prompts and the permission model to enable users to
make better-informed decisions, as well as on app markets to
identify malicious cross-device data flows.
View details