Optimization by Decoded Quantum Interferometry

Stephen Jordan
Noah Shutty
Mary Wootters
Alexander Schmidhuber
Robbie King
Sergei Isakov
arXiv:2408.08292 (2024)

Abstract

We introduce Decoded Quantum Interferometry (DQI), a quantum algorithm for reducing classical optimization problems to classical decoding problems by exploiting structure in the Fourier spectrum of the objective function. DQI reduces sparse max-XORSAT to decoding LDPC codes, which can be decoded using powerful classical algorithms such as belief propagation. As an initial benchmark, we compare DQI using belief propagation decoding against classical optimization via simulated annealing. In this setting we identify a family of max-XORSAT instances where DQI achieves a better approximation ratio on average than simulated annealing, although not better than specialized classical algorithms tailored to those instances. We also analyze a combinatorial optimization problem corresponding to finding polynomials that intersect the maximum number of points. There, DQI efficiently achieves a better approximation ratio than any polynomial-time classical algorithm known to us, thus realizing an apparent exponential quantum speedup. Finally, we show that the problem defined by Yamakawa and Zhandry in order to prove an exponential separation between quantum and classical query complexity is a special case of the optimization problem efficiently solved by DQI.

Research Areas