Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10505 publications
Mind the GAP: Geometry Aware Passthrough Mitigates Cybersickness
Trishia Chemaly
Mohit Goyal
Sakar Khattar
Bjorn Vlaskamp
Aveek Purohit
Konstantine Tsotsos
2025
Preview abstract
Virtual Reality headsets isolate users from the real-world by restricting their perception to the virtual-world. Video See-Through (VST) headsets address this by utilizing world-facing cameras to create Augmented Reality experiences. However, directly displaying camera feeds can cause visual discomfort and cybersickness due to the inaccurate perception of scale and exaggerated motion parallax. This paper presents initial findings on the potential of geometry aware passthrough systems to mitigate cybersickness through enhanced depth perception. We introduce a promising protocol for quantitatively measuring cybersickness experienced by users in VST headsets. Using this protocol, we conduct a user study to compare direct passthrough and geometry aware passthrough systems. To the best of our knowledge, our study is the first one to reveal reduced nausea, disorientation, and total scores of cybersickness with geometry aware passthrough. It also uncovers several potential avenues to further mitigate visually-induced discomfort.
View details
Preview abstract
In this article, we describe our human-centered research focused on understanding the role of collaboration and teamwork in productive software development. We describe creation of a logs-based metric to identify collaboration through observable events and a survey-based multi-item scale to assess team functioning.
View details
Our Approach to Protecting AI Training Data
Cindy Muya
Jason Novak
Cindee Madison
Reiner Critides
Ben Kamber
Niha Vempati
Jeremy Wiesner
Google, Google, Google, 1600 Amphitheatre Parkway, Mountain View, CA, 94043 (2025) (2025)
Preview abstract
Google has over 25 years experience protecting data from inappropriate access and unauthorized use. In the era of AI, Google has extended these best practices in data protection to ensure that the right data is used the right way to train models. This paper presents a number of these best practices, describes how Google applies them in its systems, and describes how Google Cloud customers can use Google Cloud capabilities to implement these practices themselves.
Protecting data requires both technical controls to enable safe data use at scale, and governance processes to ensure that companies have visibility and control over how their data is used. This fundamentally requires: understanding data and ensuring it has sufficient metadata in the form of attributes, controlling the data and implementing policies to allow (or disallow) certain usage based on those attributes, transforming data to enable its usage in policy compliant ways, and human oversight and governance.
Protecting data in AI inherits these requirements and introduces new requirements to account for unique AI-specific risks including memorization/recitation and the costs of training foundational models. Meeting these new risks requires new capabilities including enhanced understanding of data and model lineage as well as an increased ability to control data usage through checks on data for policy compliance at the time a training job is configured before it is run.
This white paper offers an in-depth look at data protection best practices and Google’s data protection capabilities, and is one of a series of publications about Google's Secure AI Framework (SAIF). Building upon its secure development practices, Google has developed and deployed a number of capabilities to understand, control, and transform data in its infrastructure so that data is both protected and used appropriately. This involves robust annotation systems to represent metadata and enable granular understanding of data at both an item and dataset level, policy engines that evaluate machine readable policies on that data using the metadata attributes, and sensors to understand how data is flowing across Google’s systems and raise alerts when policy violations occur. Moreover, Google has developed de-identification and anonymization systems to transform data to make it policy compliant and safer to use for AI training.
View details
Preview abstract
We pioneer the study of in-context training for time-series foundation models. We create finetuning examples that not only include the usual (context, horizon) pairs for forecasting; but also related time-series examples in-context. We finetune a pretrained time-series foundation model on the type of in-context examples mentioned above. Our training is decoder-only and can adapt not only to any context, horizon pair (up to a certain maximum context) but also to any number of supplementary time-series examples (again up to a certain maximum number of examples). Appropriately trained models can then learn to borrow patterns from these related examples to do better on the original forecasting task. We show that this opens up interesting features like the ability to prompt the time-series foundation model with different related examples. This can help the finetuned model to adapt to specific features of a dataset at inference time. We show that such adaptions can lead to better zero-shot performance on popular forecasting benchmarks as compared to supervised deep learning methods, statistical models as well as other time-series foundation models.
View details
Preview abstract
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
View details
Security Assurance in the Age of Generative AI
Tom Grzelak
Kara Olive
Moni Pande
Google, Google, 1600 Amphitheatre Parkway, Mountain View, CA, 94043 (2025)
Preview abstract
Artificial Intelligence (AI) is a rapidly growing field known for experimentation and quick iteration, qualities that can pose challenges for traditional enterprise security approaches. Because AI introduces unique assets and surfaces—AI-driven applications, agents, assistants, vast training datasets, the models themselves, and supporting infrastructure—we’re continually updating our security controls, guided by Google’s Secure AI Framework (SAIF).
To address the new challenges, we’ve expanded our traditional security approaches to cover the new attack surfaces by scanning for more types of vulnerabilities, analyzing more intel, preparing to respond to new kinds of incidents, and continually testing our controls in novel ways to strengthen our security posture.
This white paper is one of a series describing our approaches to implementing Google’s SAIF. In this paper we explain how we’re applying security assurance—a cross functional effort aiming to achieve high confidence that our security features, practices, procedures, controls, and architecture accurately mediate and enforce our security policies—to AI development. Security assurance efforts help to both ensure the continued security of our AI products and address relevant policy requirements.
Just as quality assurance (QA) in manufacturing meticulously examines finished products and the processes that create them to ensure they meet quality standards, security assurance serves a complementary role to the broader security efforts within an organization. Those broader security efforts span the design, implementation, and operation of controls to create secure software products; security assurance focuses on verifying and improving those efforts. Security assurance identifies gaps, weaknesses, and areas where controls may not be operating as intended, to drive continuous improvement across all security domains. It’s two-party review in action—security assurance helps build confidence that the software was not just built securely, but continues to run securely.
Since AI systems—those that use AI models for reasoning—present a combination of well understood and novel risks, AI technologies require a combination of both common and novel controls. No matter how strong these controls are, a security assurance program is essential to ensure they are working as intended and that they are continually updated and improved.
The paper opens with an overview of security assurance functions, covering several teams and capabilities that work together to ensure security controls are working across any software development lifecycle, including the AI development lifecycle. In particular, we focus on four functions—Red Teaming, Vulnerability Management, Detection & Response, and Threat Intelligence, and how those work together to address issues through Remediation.
We then describe the features specific to AI that affect assurance functions and give examples of how we’re adapting our approaches to account for AI-specific technologies and risks. We also include guidance for organizations considering creating their own AI assurance programs, including best practices for assuring training data, models, the AI software supply chain, and product integrations.
We intend this paper to be useful for a broad technical audience, including both assurance specialists who are new to AI technologies, and AI developers who are new to assurance practices.
View details
The Case for Leveraging Transport Signals to Improve Internet Speed Test Efficiency
Cristina Leon
Computer Communication Review (2025) (to appear)
Preview abstract
Internet speed tests are an important tool to enable consumers and regulators to monitor the quality of Internet access. However, increased Internet speeds to the home and an increased demand for speed testing pose scaling challenges to providers of speed tests, who must maintain costly infrastructure to keep up with this demand. In recent years, this has led the popular NDT speed test to limit data transfer to a total of 250MB, which comes at the cost of accuracy for high bandwidth speed test clients.
In this paper, we observe that the NDT speed test server’s congestion control algorithm (BBRv1) is also trying to estimate the capacity of the connection. We leverage this observation and signals from BBR to improve the accuracy and efficiency of speed tests. We first show how leveraging signals from BBR can more than double the accuracy of a 10MB test–from 17% to 43%–for clients with speeds over 400Mbps.
We then show how using BBR signals to adaptively end the speed test reduces data transfer by 36% and increased accuracy by 13% for high bandwidth clients, relative to a 100MB fixed length test. Even accounting for clients that never observe enough samples to utilize the BBR signal, this adaptive approach still uses 25% less data than a fixed 100MB test with 37-44% higher accuracy.
View details
Necro-reaper: Pruning away Dead Memory Traffic in Warehouse-Scale Computers
Proceedings of the 30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Association for Computing Machinery (2025)
Preview abstract
Memory bandwidth is emerging as a critical bottleneck in warehouse-scale computing (WSC). This work reveals that a significant portion of memory traffic in WSC is surprisingly unnecessary, consisting of unnecessary writebacks of deallocated data and fetches of uninitialized data. This issue is particularly acute in WSC, where short-lived heap allocations bigger than a cache line are prevalent. To address this problem, this work proposes a pragmatic approach tailored to WSC. Leveraging the existing WSC ecosystem of vertical integration, profile-guided compilation flows, and customized memory allocators, this work presents Necro-reaper, a novel software/hardware co-design that avoids dead memory traffic without requiring the hardware tracking of prior work. New ISA instructions enable the hardware to avoid unnecessary dead traffic, while extended software components, including a profile-guided compiler and memory allocator, optimize the utilization of these instructions. Evaluation across a diverse set of 10 WSC workloads demonstrates that Necro-reaper achieves a geomean memory traffic reduction of 26% and a geomean IPC increase of 6%.
View details
Record Number of Members Visit U.S. Congress to Talk Tech Policy
IEEE Spectrum (2025)
Preview abstract
This IEEE Spectrum article reflects on advocacy for U.S. technological leadership during my Congressional visit through IEEE-USA. Leading an expert group of other distinguished IEEE members, we urged lawmakers to support critical initiatives. Key priorities included sustained funding for federal research institutions like NIST, NASA, and the NSF, reauthorizing the SBIR/STTR programs vital for small business innovation, and passing the CREATE AI Act to democratize AI resources by establishing the National AI Research Resource (NAIRR).
We also emphasized strengthening the STEM talent pipeline through the CHIPS and Science Act and expanding high-skilled immigrant visas. We highlighted rapid AI advancements, such as autonomous vehicles, the surge in FDA-approved AI based medical devices, as underscoring the need for these strategic investments and policy actions. The article conveys a sense of urgency, calling for concrete congressional action to ensure the U.S. maintains its technological edge while also sharing my personal experiences.
View details
Preview abstract
Cloud platforms have been virtualizing storage devices like flash-based solid-state drives (SSDs) to make effective use of storage resources. They enable either software-isolated instance or hardware-isolated instance for facilitating the storage sharing between multi-tenant applications. However, for decades, they have to combat the fundamental tussle between the performance isolation and resource utilization. They suffer from either long tail latency caused by weak isolation or low storage utilization caused by strong isolation.
In this paper, we present FleetIO, a learning-based storage virtualization framework that employs reinforcement learning (RL) for managing virtualized SSDs. FleetIO explores the unique features of RL to handle the dynamic changes of application workloads and storage states, and integrates the storage scheduling into the RL decision-making process. It achieves both performance isolation and improved storage utilization by enabling dynamic fine-grained storage harvesting across co-located application instances, while minimizing its negative impact on their service-level objectives (SLOs). FleetIO clusters workloads into different types (e.g., latency-sensitive and bandwidth-intensive) based on the collected I/O traces at runtime, and fine-tunes the RL reward functions for each type of workloads. We implement FleetIO on a real programmable SSD board and evaluate it with diverse cloud applications. We show that FleetIO improves the overall storage utilization of the shared SSD by up to 1.4×, and decreases the tail latency of I/O requests by 1.5× on average, compared to the state-of-the-art storage sharing approaches.
View details
Generating Dialogues from Egocentric Instructional Videos for Task Assistance: Dataset, Method and Benchmark
Lavisha Aggarwal
Vikas Bahirwani
Lin Li
Andrea Colaco
2025
Preview abstract
Many everyday tasks ranging from fixing appliances, cooking recipes to car maintenance require expert knowledge, especially when tasks are complex and multi-step. Despite growing interest in AI agents, there is a scarcity of dialogue-video datasets grounded for real world task assistance. In this paper, we propose a simple yet effective approach that transforms single-person instructional videos into task-guidance two-person dialogues, aligned with fine grained steps and video-clips. Our fully automatic approach, powered by large language models, offers an efficient alternative to the substantial cost and effort required for manual data collection. Using this technique, we build HowToDIV, a large-scale dataset containing 507 conversations, 6636 question-answer pairs and 24 hours of videoclips across diverse tasks in cooking, mechanics, and planting. Each session includes multi-turn conversation where an expert teaches a novice user how to perform a task step by step, while observing user's surrounding through a camera and microphone equipped wearable device. We establish the baseline benchmark performance on HowToDIV dataset through Gemma-3 model, for future research on this new task of dialogues for procedural-task assistance. Our dataset and code are publicly available at our project page: https://github.com/google/howtodiv.
View details
Heterogeneous graph neural networks for species distribution modeling
Christine Kaeser-Chen
Keith Anderson
Michelangelo Conserva
Elise Kleeman
Maxim Neumann
Matt Overlan
Millie Chapman
Drew Purves
arxiv (2025)
Preview abstract
Species distribution models (SDMs) are necessary for measuring and predicting occurrences and habitat suitability of species and their relationship with environmental factors. We introduce a novel presence-only SDM with graph neural networks (GNN). In our model, species and locations are treated as two distinct node sets, and the learning task is predicting detection records as the edges that connect locations to species. Using GNN for SDM allows us to model fine-grained interactions between species and the environment. We evaluate the potential of this methodology on the six-region dataset compiled by National Center for Ecological Analysis and Synthesis (NCEAS) for benchmarking SDMs. For each of the regions, the heterogeneous GNN model is comparable to or outperforms previously-benchmarked single-species SDMs as well as a feed-forward neural network baseline model.
View details
Preview abstract
Data science, which transforms raw data into actionable insights, is critical for data-driven decision-making. However, these tasks are often complex, involving steps like exploring multiple data sources and synthesizing findings to deliver clear answers. While large language model (LLM) agents show significant promise in automating this process, they often struggle with heterogeneous data formats and generate sub-optimal analysis plans, as verifying plan correctness is inherently difficult without ground-truth labels for such open-ended tasks. To overcome these limitations, we introduce DS-STAR, a novel data science agent. Specifically, DS-STAR makes three key contributions: (1) a data file analysis module that automatically reads and extracts context from diverse data formats, including unstructured types; (2) a verification step where an LLM-based judge evaluates the sufficiency of the analysis plan at each stage; and (3) a sequential planning mechanism that starts with a simple, executable plan and iteratively refines it based the DS-STAR's feedback until its sufficiency is confirmed. This iterative refinement allows DS-STAR to reliably navigate complex analyses involving varied data sources. Our experiments show that DS-STAR achieves state-of-the-art performance, improving accuracy on the challenging DABStep benchmark from 41.0% to 45.2% and on Kramabench from 31.3% to 44.7%. These results demonstrate the effectiveness of our approach for practical, multi-step data science tasks.
View details
Preview abstract
This paper presents SYMBIOSIS, an AI-powered framework to make Systems Thinking accessible for addressing societal challenges and unlock paths for leveraging systems thinking framework to improve AI systems. The platform establishes a centralized, open-source repository of systems thinking/system dynamics models categorized by Sustainable Development Goals (SDGs) and societal topics using topic modeling and classification techniques. Systems Thinking resources, though critical for articulating causal theories in complex problem spaces, are often locked behind specialized tools and intricate notations, creating high barriers to entry. To address this, we developed a generative co-pilot that translates complex systems representations - such as causal loops and stock-flow diagrams - into natural language (and vice-versa), allowing users to explore and build models without extensive technical training.
Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to misaligned causal theories and reduced intervention effectiveness. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, we aim to serve as a foundational step to unlock future research into Responsible and society-centered AI that better integrates societal context leveraging systems thinking framework and models. Our work underscores the need for ongoing research into AI's capacity essential system dynamics such as feedback processes and time delays, paving the way for more socially attuned, effective AI systems.
View details
Preview abstract
Storage on Android has evolved significantly over the years, with each new Android version introducing changes aimed at enhancing usability, security, and privacy. While these updates typically help with restricting app access to storage through various mechanisms, they may occasionally introduce new complexities and vulnerabilities. A prime example is the introduction of scoped storage in Android 10, which fundamentally changed how apps interact with files. While intended to enhance user privacy by limiting broad access to shared storage, scoped storage has also presented developers with new challenges and potential vulnerabilities to address. However, despite its significance for user privacy and app functionality, no systematic studies have been performed to study Android’s scoped storage at depth from a security perspective. In this paper, we present the first systematic security analysis of the scoped storage mechanism. To this end, we design and implement a testing tool, named ScopeVerif, that relies on differential analysis to uncover security issues and implementation inconsistencies in Android’s storage. Specifically, ScopeVerif takes a list of security properties and checks if there are any file operations that violate any security properties defined in the official Android documentation. Additionally, we conduct a comprehensive analysis across different Android versions as well as a cross-OEM analysis to identify discrepancies in different implementations and their security implications. Our study identifies both known and unknown issues of scoped storage. Our cross-version analysis highlights undocumented changes as well as partially fixed security loopholes across versions. Additionally, we discovered several vulnerabilities in scoped storage implementations by different OEMs. These vulnerabilities stem from deviations from the documented and correct behavior, which potentially poses security risks. The affected OEMs and Google have acknowledged our findings and offered us bug bounties in response.
View details