Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11124 publications
    Preview abstract There are growing concerns about AI-generated image-based sexual abuse (AI-IBSA), also known as nonconsensual sexualized ′deepfakes.′ Empirical research on AI-IBSA, however, remains very limited. This study surveyed 7231 respondents across Australia, the United Kingdom, and the United States to investigate community attitudes and perceptions on AI-IBSA. Through a vignette study, we explored the relationship between public familiarity with AI-IBSA, normative concerns about consent, and context-dependent judgments that vary based on the target's identity relational status, and how the content was used. Our findings reveal strong condemnation of AI-IBSA, yet respondents demonstrated low familiarity with the technology and their views varied depending on particular contexts. AI-IBSA targeting intimate partners was viewed as more unacceptable than targeting celebrities, and content created solely for personal use was seen as less unacceptable than content intended for distribution. The study highlights the need for approaches that go beyond technical fixes and punitive measures, advocating for a multifaceted response that integrates ethical data governance, digital sexual literacy, and restorative justice approaches. View details
    Preview abstract LLM-based user simulators are a scalable solution for improving conversational AI, but a critical realism gap undermines their effectiveness. To close this gap, we introduce a framework for building and validating high-fidelity simulators. We present a novel dataset of human-AI shopping conversations designed to capture a wide spectrum of user experiences. To measure fidelity, we propose a hybrid evaluation protocol that combines statistical alignment with a learned, discriminator-based Human-Likeness Score. Our most sophisticated simulator, trained via reinforcement learning with iterative critique, achieves a significant leap in realism. Critically, we demonstrate through counterfactual validation that our simulator—trained exclusively on optimal interactions—realistically adapts its behavior to suboptimal system responses, mirroring real user reactions and marking a key advance in creating reliable simulators for robust AI development. View details
    ARM MTE Performance in Practice
    Taehyun Noh
    Yingchen Wang
    Tal Garfinkel
    Mahesh Madhav
    Mattan Erez
    Shravan Narayan
    Usenix Security (2026)
    Preview
    Phoenix: Rowhammer Attacks on DDR5 with Self-Correcting Synchronization
    Michele Marazzi
    Kaveh Razavi
    Salman Qazi
    Diego Meyer
    Patrick Jattke
    IEEE Security & Privacy (S&P) (2026)
    Preview
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    A Framework for Interactive Machine Learning and Enhanced Conversational Systems
    Jerry Young
    Richard Abisla
    Sanjay Batra
    Mikki Phan
    Nature, Springer-Verlag (2026)
    Preview abstract Conversational systems are increasingly prevalent, yet current versions often fail to support the full range of human speech, including variations in speed, rhythm, syntax, grammar, articulation, and resonance. This reduces their utility for individuals with dysarthria, apraxia, dysphonia, and other language and speech-related disabilities. Building on research that emphasizes the need for specialized datasets and model training tools, our study uses a scaffolded approach to understand the ideal model training and voice recording process. Our findings highlight two distinct user flows for improving model training and provide six guidelines for future conversational system-related co-design frameworks. This study offers important insights on creating more effective conversational systems by emphasizing the need to integrate interactive machine learning into training strategies. View details
    Preview abstract The current pursuit of robust Machine Intelligence is largely predicated on a substrate independent, functionalist view of cognition, where sufficiently large syntactic processing is expected to eventually yield semantic understanding. This paper explores the ontological distinctions between these computational frameworks and biological cognition, specifically regarding the emergence of robustness. By analyzing phenomena such as the "reversal curse" and performance on novel reasoning benchmarks (e.g., ARC-AGI), I examine whether current limitations are transient artifacts of scale or indicative of a distinct architectural category. Synthesizing Stevan Harnad’s "Symbol Grounding Problem" with Evan Thompson’s framework of Intrinsic Normativity in autopoietic systems, I argue that true generality requires "Sense-Making", a process distinct from "Information Processing", whereby an agent’s internal states are causally coupled with its environment via survival or system wide stakes. Without this intrinsic normativity, machines may remain epistemic instruments rather than ontic agents. By defining this "Ontic Gap," this paper offers a theoretical lens for evaluating AI safety and governance, moving beyond behavioral simulation to address the structural conditions of understanding. View details
    Unveiling the Global Landscape of Android Security Updates
    Haiyun Deng
    Abbas Acar
    Esteban Luques
    Harun Oz
    Ahmet Aris
    Selcuk Uluagac
    IEEE Transactions on Dependable and Secure Computing (2026)
    Preview abstract Android is the world’s leading mobile operating system, with over three billion active devices. Detecting vulnerabilities and ensuring timely patch deployment are critical to maintaining security. The Android Open Source Project (AOSP) has enhanced the transparency of security updates through Security Patch Levels. However, challenges related to update speed and availability persist. In 2022, Google reported that half of the zero-day vulnerabilities discovered in the wild were variations of vulnerabilities that had already been patched. Recent research mainly highlights delays in update distribution, often attributing them to fragmentation and focusing primarily on flagship devices or limited time-frames. Our approach takes a device-centric perspective to investigate Android update patterns, analyzing 567K security update records from 2014 to 2024, covering 904 distinct devices from six key Original Equipment Manufacturers (OEMs) across 98 countries. Our extensive analysis revealed notable differences in update release timing across OEMs, device types, and regions. Our study also examines documented vulnerabilities and weaknesses, while assessing OEM compliance with Android security guidelines. Our study shows that ∼89.7% of vulnerabilities on unpatched Android devices are exploitable without user interaction and with low attack complexity. We also identified delays linked to fragmentation and OEM-specific challenges, and provide actionable insights for improvement. View details
    Preview abstract Source-to-source compilers may perform inefficiently by executing transpilation passes on scripts that do not contain the specific language features a pass is designed to transform, potentially leading to redundant processing. A compiler can analyze a script to generate a per-script feature map, for example, by identifying language features in its abstract syntax tree (AST). Before executing a transpilation pass, the compiler can check this map and may bypass the pass for that script if the specific feature targeted by the pass is not present. This feature map can also be dynamically updated throughout the compilation process as other passes transform the code. This method of conditional pass execution based on content-aware analysis may reduce redundant AST traversals, which could decrease overall compilation time and computational resource consumption. View details
    Preview abstract Audio Description ( AD) provides essential access to visual media for blind and low vision ( BLV) audiences. Yet current AD production tools remain largely inaccessible to BLV video creators, who possess valuable expertise but face barriers due to visually- driven interfaces. We present ADCanvas, a multimodal authoring system that supports non- visual control over audio description ( AD) creation. ADCanvas combines conversational interaction with keyboard- based playback control and a plain- text, screen reader– accessible editor to support end- to- end AD authoring and visual question answering ( VQA). Combining screen- reader- friendly controls with a multimodal LLM agent, ADCanvas supports live VQA, script generation, and AD modification. Through a user study with 12 BLV video creators, we find that users adopt the conversational agent as an informational aide and drafting assistant, while maintaining agency through verification and editing. For example, participants saw themselves as curators who received information from the model and filtered it down for their audience. Our findings offer design implications for accessible media tools, including precise editing controls, accessibility support for creative ideation, and configurable rules for human- AI collaboration. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    Preview abstract Responsive user interfaces enable dynamically adjusting user interfaces based on device-specific aspects such as screen size, aspect ratio, display resolution, etc. However, traditional responsive design fails to account for different types of constraints of a user and task criticality of the task being performed via the UI. Misalignment between the UI design, user context and task criticality can lead to user error. This disclosure describes techniques, implemented with user permission, for dynamically modifying the layout, information density, and/or interactive physics of a user interface based on a dual-factor analysis of user cognitive state and task criticality. The user's cognitive state can be inferred from behavioral telematics. Task criticality can be inferred from semantic analysis. The information density and other parameters of a user interface are automatically adjusted based on such analyses. Such adjustments include applying or relaxing restrictions on interactivity and adjusting visual prominence of various UI elements to adjust the information density of the user interface. The adjustments can also include adjusting friction as appropriate, hiding certain aspects of the user interface, or other types of adjustments. View details
    SNPeek: Side-Channel Analysis for Privacy Applications on Confidential VMs
    Ruiyi Zhang
    Albert Cheu
    Adria Gascon
    Michael Schwarz
    Octavian Suciu
    Network and Distributed System Security (NDSS) (2026)
    Preview abstract Confidential virtual machines (CVMs) based on trusted execution environments (TEEs) enable new privacy-preserving solutions. But CVMs are not a privacy panacea, as they are vulnerable to side-channel attacks that may compromise confidentially of workloads. In this work, we develop the FARFETCH’D framework to help developers evaluate side-channel assisted privacy attacks that are broadly applicable to CVMs. The privacy reduction due to these attacks heavily depend on the execution environment and the workload, which varies vastly:What are avail-able attack primitives? How does the particular privacy work-load behave?This makes manual investigation and efficiently mitigating software-based side channels a cumbersome and impossible task. FARFETCH’D solves this challenge by providing a set of configurable attack primitives that can execute on real CVM hardware and automated ML-based analysis pipelines. We evaluate the effectiveness of FARFETCH’D on privacy-preserving workloads. Our results show that our approach is effective at pinpointing the vulnerability of privacy apps against side channels and help evaluating mitigation based on oblivious memory and differential privacy. View details
    Preview abstract Generative AI is reshaping software development, yet its psychological impact remains under-researched. During May and August 2025 we conducted reflexive thematic analysis of interviews with 12 senior engineers (≥5 years experience) recruited from Western technology hubs to explore shifts in professional identity. We identify a central transition from "coder to conductor," where AI acts as a cognitive partner. Key findings include: (1) a re-architecting of focus from implementation to strategy; (2) a shift in productivity metrics from output to impact; and (3) a dual-impact on agency, where AI empowers autonomy but threatens competence through de-skilling anxieties. These findings suggest that as implementation becomes commoditised, organisational training and career progression must prioritise architectural mastery and metacognitive oversight to ensure sustained developer motivation and system integrity. View details
    ×