Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11092 publications
    Preview abstract There are growing concerns about AI-generated image-based sexual abuse (AI-IBSA), also known as nonconsensual sexualized ′deepfakes.′ Empirical research on AI-IBSA, however, remains very limited. This study surveyed 7231 respondents across Australia, the United Kingdom, and the United States to investigate community attitudes and perceptions on AI-IBSA. Through a vignette study, we explored the relationship between public familiarity with AI-IBSA, normative concerns about consent, and context-dependent judgments that vary based on the target's identity relational status, and how the content was used. Our findings reveal strong condemnation of AI-IBSA, yet respondents demonstrated low familiarity with the technology and their views varied depending on particular contexts. AI-IBSA targeting intimate partners was viewed as more unacceptable than targeting celebrities, and content created solely for personal use was seen as less unacceptable than content intended for distribution. The study highlights the need for approaches that go beyond technical fixes and punitive measures, advocating for a multifaceted response that integrates ethical data governance, digital sexual literacy, and restorative justice approaches. View details
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Preview abstract Semantic data models express high-level business concepts and metrics, capturing the business logic needed to query a database correctly. Most data modeling solutions are built as layers above SQL query engines, with bespoke query languages or APIs. The layered approach means that semantic models can’t be used directly in SQL queries. This paper focuses on an open problem in this space – can we define semantic models in SQL, and make them naturally queryable in SQL? In parallel, graph query is becoming increasingly popular, including in SQL. SQL/PGQ extends SQL with an embedded subset of the GQL graph query language, adding property graph views and making graph traversal queries easy. We explore a surprising connection: semantic data models are graphs, and defining graphs is a data modeling problem. In both domains, users start by defining a graph model, and need query language support to easily traverse edges in the graph, which means doing joins in the underlying data. We propose some useful SQL extensions that make it easier to use higher-level data model abstractions in queries. Users can define a “semantic data graph” view of their data, encapsulating the complex business logic required to query the underlying tables correctly. Then they can query that semantic graph model easily with SQL. Our SQL extensions are useful independently, simplifying many queries – particularly, queries with joins. We make declared foreign key relationships usable for joins at query time – a feature that seems obvious but is notably missing in standard SQL. In combination, these extensions provide a practical approach to extend SQL incrementally, bringing semantic modeling and graph query together with the relational model and SQL. View details
    Who Controls the Curriculum for AI? The Limits of Participatory Design for Educational AI
    Michael Madaio
    Learning Under Algorithmic Conditions, University of Minnesota Press (2026)
    Preview abstract Participatory design is a long-standing effort to shift control over technology design from technologists to users and communities impacted by technologies. For educational AI, this means involving students, families, teachers, and other stakeholders in shaping the design of AI systems. While promising, in this article, I situate the recent calls for participatory design of educational AI systems within a different historical tradition—that of contests over local control of educational curricula. I argue that approaches that attempt to steer the design and development of educational AI through participatory methods may inadvertently reproduce the history of political contestation of educational curricula, in ways that may privilege the most powerful communities, rather than those inequitably impacted. What might it look like to treat participatory AI design as a site for political contestation? How might these approaches avoid reproducing the same majoritarian tendencies that led to educational inequities in the first place? View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    Preview abstract Given a network of routing nodes, represented as a directed graph, we prove the following necessary and sufficient condition for the existence of deadlock-free message routing: The directed graph must contain two edge-disjoint directed trees rooted at the same node, one tree directed into the root node and the other directed away from the root node. While the sufficiency of this condition is known, its necessity, to the best of our knowledge, has not been previously recognized or proven. Although not directly applicable to the construction of deadlock-free routing schemes, this result provides a fundamental insight into the nature of deadlock-free networks and may lead to the development of improved tools for designing and verifying such schemes. View details
    AfriMed-QA: A Pan-African Multi-Specialty Medical Question-Answering Benchmark Dataset
    Tobi Olatunji
    Abraham Toluwase Owodunni
    Charles Nimo
    Jennifer Orisakwe
    Henok Biadglign Ademtew
    Chris Fourie
    Foutse Yuehgoh
    Stephen Moore
    Mardhiyah Sanni
    Emmanuel Ayodele
    Timothy Faniran
    Bonaventure F. P. Dossou
    Fola Omofoye
    Wendy Kinara
    Tassallah Abdullahi
    Michael Best
    2025
    Preview abstract Recent advancements in large language model (LLM) performance on medical multiple-choice question (MCQ) benchmarks have stimulated significant interest from patients and healthcare providers globally. Particularly in low- and middle-income countries (LMICs) facing acute physician shortages and lack of specialists, LLMs offer a potentially scalable pathway to enhance healthcare access and reduce costs. However, LLM training data is sourced from predominantly Western text, existing benchmarks are predominantly Western-centric, limited to MCQs, and focused on a narrow range of clinical specialties, raising concerns about their applicability in the Global South, particularly across Africa where localized medical knowledge and linguistic diversity are often underrepresented. In this work, we introduce AfriMed-QA, the first large-scale multi-specialty Pan-African medical Question-Answer (QA) dataset designed to evaluate and develop equitable and effective LLMs for African healthcare. It contains 3,000 multiple-choice professional medical exam questions with answers and rationale, 1,500 short answer questions (SAQ) with long-from answers, and 5,500 consumer queries, sourced from over 60 medical schools across 15 countries, covering 32 medical specialties. We further rigorously evaluate multiple open, closed, general, and biomedical LLMs across multiple axes including accuracy, consistency, factuality, bias, potential for harm, local geographic relevance, medical reasoning, and recall. We believe this dataset provides a valuable resource for practical application of large language models in African healthcare and enhances the geographical diversity of health-LLM benchmark datasets. View details
    Perceptual Audio Coding: A 40-Year Historical Perspective
    Juergen Herre
    Schuyler Quackenbush
    Minje Kim
    2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2025)
    Preview abstract In the history of audio and acoustic signal processing perceptual audio coding has certainly excelled as a bright success story by its ubiquitous deployment in virtually all digital media devices, such as computers, tablets, mobile phones, set-top-boxes, and digital radios. From a technology perspective, perceptual audio coding has undergone tremendous development from the first very basic perceptually driven coders (including the popular mp3 format) to today’s full-blown integrated coding/rendering systems. This paper provides a historical overview of this research journey by pinpointing the pivotal development steps in the evolution of perceptual audio coding. Finally, it provides thoughts about future directions in this area. View details
    Preview abstract Despite the surge in popularity of virtual reality (VR), mobile phones remain the primary medium for accessing digital content, offering both privacy and portability. This short paper presents Beyond the Phone, a novel framework that enhances mobile phones in VR with context-aware controls and spatial augmentation. We first establish a comprehensive design space through brainstorming and iterative discussions with VR experts. We then develop a proof-of-concept system that analyzes UI layouts to offer context-aware controls and spatial augmentation, targeting six key application areas within our design space. Finally, we demonstrate that our system can effectively adapt to a broad spectrum of applications at runtime, and discuss future directions with reviews with seven experts. View details
    Preview abstract Virtual hand representation in Head-Mounted Displays (HMDs) offers immersive and intuitive interactions in Virtual Reality (VR). However, current hand tracking algorithms are prone to errors, which can disrupt the user experience and hinder task performance. This paper presents a novel method for providing users with visual feedback when the quality of hand tracking decreases. Our approach employs a notification modal that warns users of potential failures. We identified three common hand tracking failure scenarios and evaluated the effectiveness of our method in two distinct VR tasks: object manipulation and complex assembly tasks. Results show that our early warning system reduces task completion time, lowers hand-tracking failures by up to 83%, decreases errors, improves system usability, and reduces cognitive load. This work contributes to the development of more robust and user-friendly VR HMD applications by enhancing hand tracking reliability, usability, and workload. View details
    Preview abstract Invisible labor is work that is either not fully visible or not appropriately compensated. In open source software (OSS) ecosystems, essential tasks that do not involve code (like content moderation) often become invisible to the detriment of individuals and organizations. However, invisible labor is sufficiently difficult to measure that we do not know how much of OSS activities are invisible. Our study addresses this challenge, demonstrating that roughly half of OSS work is invisible. We do this by developing a cognitive anchoring survey technique that measures OSS developer self-assessments of labor visibility and attribution. Survey respondents (n=142) reported that their work is more likely to be invisible (2 in 3 tasks) than visible, and that half (50.1%) is uncompensated. Priming participants with the idea of visibility caused participants to think their work was more visible, and that visibility was less important, than those primed with invisibility. We also found evidence that tensions between attribution motivations probably increase how common invisible labor is. This suggests that advertising OSS activities as "open" may lead contributors to overestimate how visible their labor actually is. Our findings suggest benefits to working with varied stakeholders to make select, collectively valued activities visible, and increasing compensation in valued forms (like attribution, opportunities, or pay) when possible. This could improve fairness in software development while providing greater transparency into work designs that help organizations and communities achieve their goals. View details
    ×