Ryan Babbush

Ryan Babbush

Ryan is the director of the Quantum Algorithm & Applications Team at Google. The mandate of this research team is to develop new and more efficient quantum algorithms, discover and analyze new applications of quantum computers, build and open source tools for accelerating quantum algorithms research and compilation, and to design algorithmic experiments to execute on existing and future fault-tolerant quantum devices.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    A Simplified Version of the Quantum OTOC2 Problem
    Robbie King
    Kostyantyn Kechedzhi
    Tom O'Brien
    Vadim Smelyanskiy
    arXiv:2510.19751 (2025)
    Preview abstract This note presents a simplified version of the OTOC2 problem that was recently experimentally implemented by Google Quantum AI and collaborators. We present a formulation of the problem for growing input size and hope this spurs further theoretical work on the problem. View details
    Fast electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    Alec White
    Rolando Somma
    arXiv:2502.15882 (2025)
    Preview abstract The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst. View details
    Faster electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Alec White
    Rolando Somma
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    arXiv (2025) (to appear)
    Preview abstract We discover that many interesting electronic structure Hamiltonians have a compact and close-to-frustration-free sum-of-squares representation with a small energy gap. We show that this gap enables spectrum amplification in estimating ground state energies, which improves the cost scaling of previous approaches from the block-encoding normalization factor $\lambda$ to just $\sqrt{\lambda E_{\text{gap}}}$. For any constant-degree polynomial basis of fermionic operators, a sum-of-squares representation with optimal gap can be efficiently computed using semi-definite programming. Although the gap can be made arbitrarily small with an exponential-size basis, we find that the degree-$2$ spin-free basis in combination with approximating two-body interactions by a new Double-Factorized (DF) generalization of Tensor-Hyper-Contraction (THC) gives an excellent balance of gap, $\lambda$, and block-encoding costs. For classically-hard FeMoco complexes -- candidate applications for first useful quantum advantage -- this combination improves the Toffoli gates cost of the first estimates with DF [Phys. Rev. Research 3, 033055] or THC [PRX Quantum 2, 030305] by over two orders of magnitude. https://drive.google.com/file/d/1hw4zFv_X0GeMpE4et6SS9gAUM9My98iJ/view?usp=sharing View details
    Quantum Algorithms for Linear Matrix Equations
    Rolando Somma
    Guang Hao Low
    Dominic Berry
    arXiv:2508.02822 (2025)
    Preview abstract We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Rather than encoding the solution in a quantum state in a fashion analogous to prior quantum linear algebra solvers, our approach constructs the solution matrix X in a block-encoding, rescaled by some factor. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems. View details
    Faster electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    Alec White
    Rolando Somma
    Physical Review X, 15 (2025), pp. 041016
    Preview abstract The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectral amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectral amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor Λ to just √2⁢Λ⁢𝐸gap, where 𝐸gap ≪Λ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes—namely, double factorization and tensor hypercontraction—that when combined with spectral amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of iron-sulfur complexes and a CO2-fixation catalyst. View details
    Preview abstract Recent breakthroughs in generative machine learning, powered by massive computational resources, have demonstrated unprecedented human-like capabilities. While beyond-classical quantum experiments can generate samples from classically intractable distributions, their complexity has thwarted all efforts toward efficient learning. This challenge has hindered demonstrations of generative quantum advantage: the ability of quantum computers to learn and generate desired outputs substantially better than classical computers. We resolve this challenge by introducing families of generative quantum models that are hard to simulate classically, are efficiently trainable, exhibit no barren plateaus or proliferating local minima, and can learn to generate distributions beyond the reach of classical computers. Using a 68-qubit superconducting quantum processor, we demonstrate these capabilities in two scenarios: learning classically intractable probability distributions and learning quantum circuits for accelerated physical simulation. Our results establish that both learning and sampling can be performed efficiently in the beyond-classical regime, opening new possibilities for quantum-enhanced generative models with provable advantage. View details
    Triply efficient shadow tomography
    Robbie King
    David Gosset
    PRX Quantum, 6 (2025), pp. 010336
    Preview abstract Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error. View details
    Quantum simulation with sum-of-squares spectral amplification
    Robbie King
    Guang Hao Low
    Rolando Somma
    arXiv:2505.01528 (2025)
    Preview abstract We introduce sum-of-squares spectral amplification (SOSSA), a framework for improving quantum simulation algorithms relevant to low-energy problems. SOSSA first represents the Hamiltonian as a sum-of-squares and then applies spectral amplification to amplify the low-energy spectrum. The sum-of-squares representation can be obtained using semidefinite programming. We show that SOSSA can improve the efficiency of traditional methods in several simulation tasks involving low-energy states. Specifically, we provide fast quantum algorithms for energy and phase estimation that improve over the state-of-the-art in both query and gate complexities, complementing recent results on fast time evolution of low-energy states. To further illustrate the power of SOSSA, we apply it to the Sachdev-Ye-Kitaev model, a representative strongly correlated system, where we demonstrate asymptotic speedups by a factor of the square root of the system size. Notably, SOSSA was recently used in [G.H. Low \textit{et al.}, arXiv:2502.15882 (2025)] to achieve state-of-art costs for phase estimation of real-world quantum chemistry systems. View details
    Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories
    Tyler Cochran
    Bernhard Jobst
    Yuri Lensky
    Gaurav Gyawali
    Norhan Eassa
    Melissa Will
    Aaron Szasz
    Dmitry Abanin
    Rajeev Acharya
    Laleh Beni
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Brian Ballard
    Alexandre Bourassa
    Michael Broughton
    David Browne
    Brett Buchea
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Anthony Cabrera
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Jahan Claes
    Agnetta Cleland
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Sayan Das
    Laura De Lorenzo
    Agustin Di Paolo
    Paul Donohoe
    ILYA Drozdov
    Andrew Dunsworth
    Alec Eickbusch
    Aviv Elbag
    Mahmoud Elzouka
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Suhas Ganjam
    Robert Gasca
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Dietrich Graumann
    Alex Greene
    Steve Habegger
    Monica Hansen
    Sean Harrington
    Paula Heu
    Oscar Higgott
    Jeremy Hilton
    Robert Huang
    Ashley Huff
    Bill Huggins
    Cody Jones
    Chaitali Joshi
    Pavol Juhas
    Hui Kang
    Amir Karamlou
    Kostyantyn Kechedzhi
    Trupti Khaire
    Bryce Kobrin
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Vlad Kurilovich
    Dave Landhuis
    Tiano Lange-Dei
    Brandon Langley
    Kim Ming Lau
    Justin Ledford
    Kenny Lee
    Loick Le Guevel
    Wing Li
    Alexander Lill
    Will Livingston
    Aditya Locharla
    Daniel Lundahl
    Aaron Lunt
    Sid Madhuk
    Ashley Maloney
    Salvatore Mandra
    Leigh Martin
    Orion Martin
    Cameron Maxfield
    Seneca Meeks
    Anthony Megrant
    Reza Molavi
    Sebastian Molina
    Shirin Montazeri
    Ramis Movassagh
    Charles Neill
    Michael Newman
    Murray Ich Nguyen
    Chia Ni
    Kris Ottosson
    Alex Pizzuto
    Rebecca Potter
    Orion Pritchard
    Ganesh Ramachandran
    Matt Reagor
    David Rhodes
    Gabrielle Roberts
    Kannan Sankaragomathi
    Henry Schurkus
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Spencer Small
    Clarke Smith
    Sofia Springer
    George Sterling
    Jordan Suchard
    Alex Sztein
    Doug Thor
    Mert Torunbalci
    Abeer Vaishnav
    Justin Vargas
    Sergey Vdovichev
    Guifre Vidal
    Steven Waltman
    Shannon Wang
    Brayden Ware
    Kristi Wong
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Bicheng Ying
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Yu Chen
    Vadim Smelyanskiy
    Adam Gammon-Smith
    Frank Pollmann
    Michael Knap
    Nature, 642 (2025), 315–320
    Preview abstract Lattice gauge theories (LGTs) can be used to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging, as it requires solving many-body problems that are generally beyond perturbative limits. Here we investigate the dynamics of local excitations in a LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit that prepares low-energy states that have a large overlap with the ground state; then we create charge excitations with local gates and simulate their quantum dynamics by means of a discretized time evolution. As the electric field coupling constant is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the electric field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT, from which we uncover two distinct regimes inside the confining phase: for weak confinement, the string fluctuates strongly in the transverse direction, whereas for strong confinement, transverse fluctuations are effectively frozen. We also demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a new set of techniques for investigating emergent excitations and string dynamics. View details
    Quantum Simulation of Chemistry via Quantum Fast Multipole Transform
    Dominic Berry
    Kianna Wan
    Andrew Baczewski
    Elliot Eklund
    Arkin Tikku
    arXiv:2510.07380 (2025)
    Preview abstract Here we describe an approach for simulating quantum chemistry on quantum computers with significantly lower asymptotic complexity than prior work. The approach uses a real-space first-quantised representation of the molecular Hamiltonian which we propagate using high-order product formulae. Essential for this low complexity is the use of a technique similar to the fast multipole method for computing the Coulomb operator with $\widetilde{\cal O}(\eta)$ complexity for a simulation with $\eta$ particles. We show how to modify this algorithm so that it can be implemented on a quantum computer. We ultimately demonstrate an approach with $t(\eta^{4/3}N^{1/3} + \eta^{1/3} N^{2/3} ) (\eta Nt/\epsilon)^{o(1)}$ gate complexity, where $N$ is the number of grid points, $\epsilon$ is target precision, and $t$ is the duration of time evolution. This is roughly a speedup by ${\cal O}(\eta)$ over most prior algorithms. We provide lower complexity than all prior work for $N<\eta^6$ (the only regime of practical interest), with only first-quantised interaction-picture simulations providing better performance for $N>\eta^6$. However, we expect the algorithm to have large constant factors that are likely to limit its practical applicability. View details