Ryan Babbush

Ryan Babbush

Ryan is the director of the Quantum Algorithm & Applications Team at Google. The mandate of this research team is to develop new and more efficient quantum algorithms, discover and analyze new applications of quantum computers, build and open source tools for accelerating quantum algorithms research and compilation, and to design algorithmic experiments to execute on existing and future fault-tolerant quantum devices.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Decoded Quantum Interferometry (DQI) provides a framework for superpolynomial quantum speedups by reducing certain optimization problems to reversible decoding tasks. We apply DQI to the Optimal Polynomial Intersection (OPI) problem, whose dual code is Reed-Solomon (RS). We establish that DQI for OPI is the first known candidate for verifiable quantum advantage with optimal asymptotic speedup: solving instances with classical hardness $O(2^N)$ requires only $\widetilde{O}(N)$ quantum gates, matching the theoretical lower bound. Realizing this speedup requires highly efficient reversible RS decoders. We introduce novel quantum circuits for the Extended Euclidean Algorithm, the decoder's bottleneck. Our techniques, including a new representation for implicit Bézout coefficient access, and optimized in-place architectures, reduce the leading-order space complexity to the theoretical minimum of $2nb$ qubits while significantly lowering gate counts. These improvements are broadly applicable, including to Shor's algorithm for the discrete logarithm. We analyze OPI over binary extension fields $GF(2^b)$, assess hardness against new classical attacks, and identify resilient instances. Our resource estimates show that classically intractable OPI instances (requiring $>10^{23}$ classical trials) can be solved with approximately 5.72 million Toffoli gates. This is substantially less than the count required for breaking RSA-2048, positioning DQI as a compelling candidate for practical, verifiable quantum advantage. View details
    Rapid Initial-State Preparation for the Quantum Simulation of Strongly Correlated Molecules
    Dominic Berry
    Yu Tong
    Alec White
    Tae In Kim
    Lin Lin
    Seunghoon Lee
    Garnet Chan
    PRX Quantum, 6 (2025), pp. 020327
    Preview abstract Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state preparation; however, in reality the initial state will have imperfect overlap with the true ground state. Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approximations and by more efficient filtering of the prepared state to find the ground-state energy. We show how to achieve unitary synthesis with a Toffoli complexity about 7 × lower than that in prior work and use that to derive a more efficient MPS-preparation method. For filtering, we present two different approaches: sampling and binary search. For both, we use the theory of window functions to avoid large phase errors and minimize the complexity. We find that the binary-search approach provides better scaling with the overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about 0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S cluster systems, including the Fe⁢Mo cofactor by estimating the overlap of different MPS initial states with potential ground states of the Fe⁢Mo cofactor using an extrapolation procedure. With a modest MPS bond dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a candidate ground state of the Fe⁢Mo cofactor, producing a total resource estimate of 7.3e10 Toffoli gates; neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior estimates that have used perfect ground-state overlap. This presents an example of a practical path to prepare states of high overlap in a challenging-to-compute chemical system. View details
    Quantum Algorithms for Linear Matrix Equations
    Rolando Somma
    Guang Hao Low
    Dominic Berry
    arXiv:2508.02822 (2025)
    Preview abstract We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Rather than encoding the solution in a quantum state in a fashion analogous to prior quantum linear algebra solvers, our approach constructs the solution matrix X in a block-encoding, rescaled by some factor. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems. View details
    Quantum simulation with sum-of-squares spectral amplification
    Robbie King
    Guang Hao Low
    Rolando Somma
    arXiv:2505.01528 (2025)
    Preview abstract We introduce sum-of-squares spectral amplification (SOSSA), a framework for improving quantum simulation algorithms relevant to low-energy problems. SOSSA first represents the Hamiltonian as a sum-of-squares and then applies spectral amplification to amplify the low-energy spectrum. The sum-of-squares representation can be obtained using semidefinite programming. We show that SOSSA can improve the efficiency of traditional methods in several simulation tasks involving low-energy states. Specifically, we provide fast quantum algorithms for energy and phase estimation that improve over the state-of-the-art in both query and gate complexities, complementing recent results on fast time evolution of low-energy states. To further illustrate the power of SOSSA, we apply it to the Sachdev-Ye-Kitaev model, a representative strongly correlated system, where we demonstrate asymptotic speedups by a factor of the square root of the system size. Notably, SOSSA was recently used in [G.H. Low \textit{et al.}, arXiv:2502.15882 (2025)] to achieve state-of-art costs for phase estimation of real-world quantum chemistry systems. View details
    Faster electronic structure quantum simulation by spectrum amplification
    Guang Hao Low
    Robbie King
    Alec White
    Rolando Somma
    Dominic Berry
    Qiushi Han
    Albert Eugene DePrince III
    arXiv (2025) (to appear)
    Preview abstract We discover that many interesting electronic structure Hamiltonians have a compact and close-to-frustration-free sum-of-squares representation with a small energy gap. We show that this gap enables spectrum amplification in estimating ground state energies, which improves the cost scaling of previous approaches from the block-encoding normalization factor $\lambda$ to just $\sqrt{\lambda E_{\text{gap}}}$. For any constant-degree polynomial basis of fermionic operators, a sum-of-squares representation with optimal gap can be efficiently computed using semi-definite programming. Although the gap can be made arbitrarily small with an exponential-size basis, we find that the degree-$2$ spin-free basis in combination with approximating two-body interactions by a new Double-Factorized (DF) generalization of Tensor-Hyper-Contraction (THC) gives an excellent balance of gap, $\lambda$, and block-encoding costs. For classically-hard FeMoco complexes -- candidate applications for first useful quantum advantage -- this combination improves the Toffoli gates cost of the first estimates with DF [Phys. Rev. Research 3, 033055] or THC [PRX Quantum 2, 030305] by over two orders of magnitude. https://drive.google.com/file/d/1hw4zFv_X0GeMpE4et6SS9gAUM9My98iJ/view?usp=sharing View details
    Quartic Quantum Speedups for Planted Inference Problems
    Alexander Schmidhuber
    Ryan O'Donnell
    Physical Review X, 15 (2025), pp. 021077
    Preview abstract We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks. View details
    Optimization by Decoded Quantum Interfereometry
    Stephen Jordan
    Mary Wootters
    Alexander Schmidhuber
    Robbie King
    Sergei Isakov
    Nature, 646 (2025), pp. 831-836
    Preview abstract Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems. View details
    Shadow Hamiltonian Simulation
    Rolando Somma
    Robbie King
    Tom O'Brien
    Nature Communications, 16 (2025), pp. 2690
    Preview abstract Simulating quantum dynamics is one of the most important applications of quantum computers. Traditional approaches for quantum simulation involve preparing the full evolved state of the system and then measuring some physical quantity. Here, we present a different and novel approach to quantum simulation that uses a compressed quantum state that we call the "shadow state". The amplitudes of this shadow state are proportional to the time-dependent expectations of a specific set of operators of interest, and it evolves according to its own Schrödinger equation. This evolution can be simulated on a quantum computer efficiently under broad conditions. Applications of this approach to quantum simulation problems include simulating the dynamics of exponentially large systems of free fermions or free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. These simulations are hard for classical methods and also for traditional quantum approaches, as preparing the full states would require exponential resources. Shadow Hamiltonian simulation can also be extended to simulate expectations of more complex operators such as two-time correlators or Green's functions, and to study the evolution of operators themselves in the Heisenberg picture. View details
    Preview abstract The solution of linear systems of equations is the basis of many other quantum algorithms, and recent results provided an algorithm with optimal scaling in both the condition number κ and the allowable error ϵ [PRX Quantum 3, 0403003 (2022)]. That work was based on the discrete adiabatic theorem, and worked out an explicit constant factor for an upper bound on the complexity. Here we show via numerical testing on random matrices that the constant factor is in practice about 1,200 times smaller than the upper bound found numerically in the previous results. That means that this approach is far more efficient than might naively be expected from the upper bound. In particular, it is over an order of magnitude more efficient than using a randomized approach from [arXiv:2305.11352] that claimed to be more efficient. View details
    Optimization by Decoded Quantum Interferometry
    Stephen Jordan
    Mary Wootters
    Alexander Schmidhuber
    Robbie King
    Sergei Isakov
    Nature, 646 (2025), 831–836
    Preview abstract Achieving superpolynomial speed-ups for optimization has long been a central goal for quantum algorithms. Here we introduce decoded quantum interferometry (DQI), a quantum algorithm that uses the quantum Fourier transform to reduce optimization problems to decoding problems. When approximating optimal polynomial fits over finite fields, DQI achieves a superpolynomial speed-up over known classical algorithms. The speed-up arises because the algebraic structure of the problem is reflected in the decoding problem, which can be solved efficiently. We then investigate whether this approach can achieve a speed-up for optimization problems that lack an algebraic structure but have sparse clauses. These problems reduce to decoding low-density parity-check codes, for which powerful decoders are known. To test this, we construct a max-XORSAT instance for which DQI finds an approximate optimum substantially faster than general-purpose classical heuristics, such as simulated annealing. Although a tailored classical solver can outperform DQI on this instance, our results establish that combining quantum Fourier transforms with powerful decoding primitives provides a promising new path towards quantum speed-ups for hard optimization problems. View details
    ×