Anthony Hieu Nguyen

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Stable quantum-correlated many-body states through engineered dissipation
    Sara Shabani
    Dripto Debroy
    Jerome Lloyd
    Alexios Michailidis
    Andrew Dunsworth
    Bill Huggins
    Markus Hoffmann
    Alexis Morvan
    Josh Cogan
    Ben Curtin
    Guifre Vidal
    Bob Buckley
    Tom O'Brien
    John Mark Kreikebaum
    Rajeev Acharya
    Joonho Lee
    Ningfeng Zhu
    Shirin Montazeri
    Sergei Isakov
    Jamie Yao
    Clarke Smith
    Rebecca Potter
    Sean Harrington
    Jeremy Hilton
    Paula Heu
    Alexei Kitaev
    Alex Crook
    Fedor Kostritsa
    Kim Ming Lau
    Dmitry Abanin
    Trent Huang
    Aaron Shorter
    Steve Habegger
    Gina Bortoli
    Charles Rocque
    Vladimir Shvarts
    Alfredo Torres
    Anthony Megrant
    Charles Neill
    Michael Hamilton
    Dar Gilboa
    Lily Laws
    Nicholas Bushnell
    Ramis Movassagh
    Mike Shearn
    Wojtek Mruczkiewicz
    Desmond Chik
    Leonid Pryadko
    Xiao Mi
    Brooks Foxen
    Frank Arute
    Alejo Grajales Dau
    Yaxing Zhang
    Lara Faoro
    Alexander Lill
    JiunHow Ng
    Justin Iveland
    Marco Szalay
    Orion Martin
    Juhwan Yoo
    Michael Newman
    William Giang
    Alex Opremcak
    Amanda Mieszala
    William Courtney
    Andrey Klots
    Wayne Liu
    Pavel Laptev
    Charina Chou
    Paul Conner
    Rolando Somma
    Vadim Smelyanskiy
    Benjamin Chiaro
    Grayson Young
    Tim Burger
    ILYA Drozdov
    Agustin Di Paolo
    Jimmy Chen
    Marika Kieferova
    Michael Broughton
    Negar Saei
    Juan Atalaya
    Markus Ansmann
    Pavol Juhas
    Murray Ich Nguyen
    Yuri Lensky
    Roberto Collins
    Élie Genois
    Jindra Skruzny
    Igor Aleiner
    Yu Chen
    Reza Fatemi
    Leon Brill
    Ashley Huff
    Doug Strain
    Monica Hansen
    Noah Shutty
    Ebrahim Forati
    Dave Landhuis
    Kenny Lee
    Ping Yeh
    Kunal Arya
    Henry Schurkus
    Cheng Xing
    Cody Jones
    Edward Farhi
    Raja Gosula
    Andre Petukhov
    Alexander Korotkov
    Ani Nersisyan
    Christopher Schuster
    George Sterling
    Kostyantyn Kechedzhi
    Trond Andersen
    Alexandre Bourassa
    Kannan Sankaragomathi
    Vinicius Ferreira
    Science, 383 (2024), pp. 1332-1337
    Preview abstract Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors. View details
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Tomaž Prosen
    Vedika Khemani
    Rhine Samajdar
    Jesse Hoke
    Sarang Gopalakrishnan
    Andrew Dunsworth
    Bill Huggins
    Markus Hoffmann
    Alexis Morvan
    Josh Cogan
    Ben Curtin
    Guifre Vidal
    Bob Buckley
    Tom O'Brien
    John Mark Kreikebaum
    Rajeev Acharya
    Joonho Lee
    Ningfeng Zhu
    Shirin Montazeri
    Sergei Isakov
    Jamie Yao
    Clarke Smith
    Rebecca Potter
    Sean Harrington
    Jeremy Hilton
    Paula Heu
    Alexei Kitaev
    Alex Crook
    Fedor Kostritsa
    Kim Ming Lau
    Dmitry Abanin
    Trent Huang
    Aaron Shorter
    Steve Habegger
    Steven Martin
    Gina Bortoli
    Seun Omonije
    Richard Ross Allen
    Charles Rocque
    Vladimir Shvarts
    Alfredo Torres
    Anthony Megrant
    Charles Neill
    Michael Hamilton
    Dar Gilboa
    Lily Laws
    Nicholas Bushnell
    Kyle Anderson
    Ramis Movassagh
    David Rhodes
    Mike Shearn
    Wojtek Mruczkiewicz
    Desmond Chik
    Leonid Pryadko
    Xiao Mi
    Brooks Foxen
    Frank Arute
    Alejo Grajales Dau
    Yaxing Zhang
    Lara Faoro
    Alexander Lill
    Gordon Hill
    JiunHow Ng
    Justin Iveland
    Marco Szalay
    Orion Martin
    Juan Campero
    Juhwan Yoo
    Michael Newman
    William Giang
    Gonzalo Garcia
    Alex Opremcak
    Amanda Mieszala
    William Courtney
    Andrey Klots
    Wayne Liu
    Pavel Laptev
    Paul Conner
    Rolando Somma
    Vadim Smelyanskiy
    Benjamin Chiaro
    Grayson Young
    Tim Burger
    ILYA Drozdov
    Agustin Di Paolo
    Jimmy Chen
    Marika Kieferova
    Hung-Shen Chang
    Michael Broughton
    Negar Saei
    Juan Atalaya
    Markus Ansmann
    Pavol Juhas
    Murray Ich Nguyen
    Yuri Lensky
    Roberto Collins
    Élie Genois
    Jindra Skruzny
    Yu Chen
    Reza Fatemi
    Leon Brill
    Seneca Meeks
    Ashley Huff
    Doug Strain
    Monica Hansen
    Noah Shutty
    Ebrahim Forati
    Doug Thor
    Dave Landhuis
    Kenny Lee
    Ping Yeh
    Kunal Arya
    Henry Schurkus
    Cheng Xing
    Cody Jones
    Edward Farhi
    Vlad Sivak
    Raja Gosula
    Andre Petukhov
    Clint Earle
    Alexander Korotkov
    Ani Nersisyan
    Christopher Schuster
    George Sterling
    Trond Andersen
    Alexandre Bourassa
    Salvatore Mandra
    Kannan Sankaragomathi
    Vinicius Ferreira
    Science, 384 (2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Readout of a quantum processor with high dynamic range Josephson parametric amplifiers
    Andrew Dunsworth
    Markus Rudolf Hoffmann
    Alexis Morvan
    Josh Godfrey Cogan
    Ben Curtin
    Bob Benjamin Buckley
    Trevor Johnathan Mccourt
    John Mark Kreikebaum
    Rajeev Acharya
    Ningfeng Zhu
    Shirin Montazeri
    Jamie Yao
    Rebecca Potter
    Sean Harrington
    Jeremy Patterson Hilton
    Alex Crook
    Fedor Kostritsa
    Trent Huang
    Aaron Shorter
    Vladimir Shvarts
    Alfredo Torres
    Anthony Megrant
    Charles Neill
    Michael C. Hamilton
    Lily MeeKit Laws
    Nicholas Bushnell
    Mike Shearn
    Xiao Mi
    Brooks Riley Foxen
    Frank Carlton Arute
    Alejandro Grajales Dau
    Alexander Lill
    JiunHow Ng
    Justin Thomas Iveland
    Marco Szalay
    Juhwan Yoo
    William Giang
    Alex Opremcak
    Wayne Liu
    Pavel Laptev
    Benjamin Chiaro
    Grayson Robert Young
    Tim Burger
    Jimmy Chen
    Marika Kieferova
    Markus Ansmann
    Murray Nguyen
    Roberto Collins
    Yu Chen
    Reza Fatemi
    Leon Brill
    Ashley Anne Huff
    Ebrahim Forati
    Dave Landhuis
    Kenny Lee
    Ping Yeh
    Kunal Arya
    Alexander Korotkov
    Ani Nersisyan
    Christopher Schuster
    Alexandre Bourassa
    Kannan Aryaperumal Sankaragomathi
    Applied Physics Letters, 122 (2023), pp. 014001
    Preview abstract We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 $\Omega$ environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to $-95$~dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, and qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs. View details
    Purification-Based Quantum Error Mitigation of Pair-Correlated Electron Simulations
    Christian Gogolin
    Vincent Elfving
    Fotios Gkritsis
    Oumarou Oumarou
    Gian-Luca R. Anselmetti
    Masoud Mohseni
    Andrew Dunsworth
    William J. Huggins
    Markus Rudolf Hoffmann
    Alexis Morvan
    Josh Godfrey Cogan
    Ben Curtin
    Guifre Vidal
    Bob Benjamin Buckley
    Trevor Johnathan Mccourt
    Thomas E O'Brien
    John Mark Kreikebaum
    Rajeev Acharya
    Joonho Lee
    Ningfeng Zhu
    Shirin Montazeri
    Sergei Isakov
    Jamie Yao
    Clarke Smith
    Rebecca Potter
    Sean Harrington
    Jeremy Patterson Hilton
    Alex Crook
    Fedor Kostritsa
    Kim Ming Lau
    Dmitry Abanin
    Trent Huang
    Aaron Shorter
    Steve Habegger
    Richard Ross Allen
    Vladimir Shvarts
    Alfredo Torres
    Stefano Polla
    Anthony Megrant
    Charles Neill
    Michael C. Hamilton
    Dar Gilboa
    Lily MeeKit Laws
    Nicholas Bushnell
    Kyle Anderson
    Ramis Movassagh
    Mike Shearn
    Wojtek Mruczkiewicz
    Desmond Chun Fung Chik
    Xiao Mi
    Brooks Riley Foxen
    Frank Carlton Arute
    Alejandro Grajales Dau
    Yaxing Zhang
    Lara Faoro
    Alexander T. Lill
    Jiun How Ng
    Justin Thomas Iveland
    Marco Szalay
    Orion Martin
    Juhwan Yoo
    Michael Newman
    William Giang
    Alex Opremcak
    William Courtney
    Andrey Klots
    Wayne Liu
    Pavel Laptev
    Paul Conner
    Rolando Diego Somma
    Vadim Smelyanskiy
    Benjamin Chiaro
    Grayson Robert Young
    Tim Burger
    Ilya Drozdov
    Jimmy Chen
    Marika Kieferova
    Michael Blythe Broughton
    Juan Atalaya
    Markus Ansmann
    Pavol Juhas
    Murray Nguyen
    Daniel Eppens
    Roberto Collins
    Jindra Skruzny
    Igor Aleiner
    Yu Chen
    Reza Fatemi
    Leon Brill
    Ashley Anne Huff
    Doug Strain
    Ebrahim Forati
    Dave Landhuis
    Kenny Lee
    Ping Yeh
    Kunal Arya
    Cody Jones
    Edward Farhi
    Andre Gregory Petukhov
    Alexander Korotkov
    Ani Nersisyan
    Christopher Schuster
    Kostyantyn Kechedzhi
    Trond Ikdahl Andersen
    Alexandre Bourassa
    Kannan Aryaperumal Sankaragomathi
    Nature Physics (2023)
    Preview abstract An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations. View details
    Measurement-induced entanglement and teleportation on a noisy quantum processor
    Vedika Khemani
    Matteo Ippoliti
    Andrew Dunsworth
    Bill Huggins
    Markus Hoffmann
    Alexis Morvan
    Josh Cogan
    Ben Curtin
    Guifre Vidal
    Bob Buckley
    Tom O'Brien
    John Mark Kreikebaum
    Rajeev Acharya
    Joonho Lee
    Ningfeng Zhu
    Shirin Montazeri
    Sergei Isakov
    Jamie Yao
    Clarke Smith
    Rebecca Potter
    Jeremy Hilton
    Paula Heu
    Alexei Kitaev
    Alex Crook
    Fedor Kostritsa
    Kim Ming Lau
    Dmitry Abanin
    Trent Huang
    Aaron Shorter
    Steve Habegger
    Gina Bortoli
    Seun Omonije
    Charles Rocque
    Vladimir Shvarts
    Alfredo Torres
    Anthony Megrant
    Charles Neill
    Michael Hamilton
    Dar Gilboa
    Lily Laws
    Nicholas Bushnell
    Ramis Movassagh
    Mike Shearn
    Wojtek Mruczkiewicz
    Desmond Chik
    Leonid Pryadko
    Xiao Mi
    Brooks Foxen
    Frank Arute
    Alejo Grajales Dau
    Yaxing Zhang
    Alexander Lill
    JiunHow Ng
    Justin Iveland
    Marco Szalay
    Orion Martin
    Juhwan Yoo
    Michael Newman
    William Giang
    Alex Opremcak
    Amanda Mieszala
    William Courtney
    Andrey Klots
    Wayne Liu
    Pavel Laptev
    Paul Conner
    Rolando Somma
    Vadim Smelyanskiy
    Jesse Hoke
    Benjamin Chiaro
    Grayson Young
    Tim Burger
    ILYA Drozdov
    Agustin Di Paolo
    Jimmy Chen
    Marika Kieferova
    Michael Broughton
    Negar Saei
    Juan Atalaya
    Markus Ansmann
    Pavol Juhas
    Murray Ich Nguyen
    Yuri Lensky
    Daniel Eppens
    Roberto Collins
    Jindra Skruzny
    Yu Chen
    Reza Fatemi
    Leon Brill
    Ashley Huff
    Doug Strain
    Monica Hansen
    Noah Shutty
    Ebrahim Forati
    Dave Landhuis
    Kenny Lee
    Ping Yeh
    Kunal Arya
    Henry Schurkus
    Cheng Xing
    Cody Jones
    Edward Farhi
    Raja Gosula
    Andre Petukhov
    Alexander Korotkov
    Ani Nersisyan
    Christopher Schuster
    George Sterling
    Kostyantyn Kechedzhi
    Trond Andersen
    Alexandre Bourassa
    Kannan Sankaragomathi
    Vinicius Ferreira
    Nature, 622 (2023), 481–486
    Preview abstract Measurement has a special role in quantum theory: by collapsing the wavefunction, it can enable phenomena such as teleportation and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time that go beyond the established paradigms for characterizing phases, either in or out of equilibrium. For present-day noisy intermediate-scale quantum (NISQ) processors, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling to measurement-induced teleportation. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors. View details