Avinatan Hassidim

Avinatan Hassidim

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    An Empirical Study of Time of Day Breakpoints in Traffic Light Plans
    Eliav Buchnik
    Tom Kalvari
    Jack Haddad
    Dan Karliner
    Danny Veikherman
    Shai Ferster
    Ori Rottenstreich
    2025
    Preview abstract Fixed time strategy is a common approach in signal traffic control in which signal plans are simple and periodic, enjoying easy implementation without detection mechanisms. A traffic light is associated with several daily plans, each applied to several consecutive hours. Time-of-day breakpoints (TODs) refer to the times over the day in which the plan is changed. TODs are often selected based on traffic, aiming to divide the day into groups of consecutive hours with similar traffic characteristics within each group of hours. We present a methodology to study time-of-day breakpoints in practice. We use this methodology to estimate and analyze time-of-day breakpoints in the city of Rio de Janeiro, Brazil based on traffic properties derived from traffic trajectories. Our study examines over 900 of the city intersections. We refer to properties such as the number of daily plans and the times by which plans start. We also provide traffic-aware insights on the potential improvement in the selection of TODs and identify key intersections where adjusting TODs could reduce average delay times. We identify potential improvements in over 8% of the examined intersections. These findings provide valuable insights for traffic engineers seeking to optimize signal timing. View details
    LLM-based Lossless Text Simplification and its Effect on User Comprehension and Cognitive Load
    Theo Guidroz
    Diego Ardila
    Jimmy Li
    Adam Mansour
    Paul Jhun
    Nina Gonzalez
    Xiang Ji
    Mike Sanchez
    Sujay Kakarmath
    Miguel Ángel Garrido
    Faruk Ahmed
    Divyansh Choudhary
    Jay Hartford
    Georgina Xu
    Henry Serrano
    Yifan Wang
    Jeff Shaffer
    Eric (Yifan) Cao
    Sho Fujiwara
    Peggy Bui
    arXiv (2025)
    Preview abstract Information on the web, such as scientific publications and Wikipedia, often surpasses users' reading level. To help address this, we used a self-refinement approach to develop a LLM capability for minimally lossy text simplification. To validate our approach, we conducted a randomized study involving 4563 participants and 31 texts spanning 6 broad subject areas: PubMed (biomedical scientific articles), biology, law, finance, literature/philosophy, and aerospace/computer science. Participants were randomized to viewing original or simplified texts in a subject area, and answered multiple-choice questions (MCQs) that tested their comprehension of the text. The participants were also asked to provide qualitative feedback such as task difficulty. Our results indicate that participants who read the simplified text answered more MCQs correctly than their counterparts who read the original text (3.9% absolute increase, p<0.05). This gain was most striking with PubMed (14.6%), while more moderate gains were observed for finance (5.5%), aerospace/computer science (3.8%) domains, and legal (3.5%). Notably, the results were robust to whether participants could refer back to the text while answering MCQs. The absolute accuracy decreased by up to ~9% for both original and simplified setups where participants could not refer back to the text, but the ~4% overall improvement persisted. Finally, participants' self-reported perceived ease based on a simplified NASA Task Load Index was greater for those who read the simplified text (absolute change on a 5-point scale 0.33, p<0.05). This randomized study, involving an order of magnitude more participants than prior works, demonstrates the potential of LLMs to make complex information easier to understand. Our work aims to enable a broader audience to better learn and make use of expert knowledge available on the web, improving information accessibility. View details
    Preview abstract While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic system optimised for clinical management and dialogue, incorporating reasoning over the evolution of disease and multiple patient visit encounters, response to therapy, and professional competence in medication prescription. To ground its reasoning in authoritative clinical knowledge, AMIE leverages Gemini's long-context capabilities, combining in-context retrieval with structured reasoning to align its output with relevant and up-to-date clinical practice guidelines and drug formularies. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) study, AMIE was compared to 21 primary care physicians (PCPs) across 100 multi-visit case scenarios designed to reflect UK NICE Guidance and BMJ Best Practice guidelines. AMIE was non-inferior to PCPs in management reasoning as assessed by specialist physicians and scored better in both preciseness of treatments and investigations, and in its alignment with and grounding of management plans in clinical guidelines. To benchmark medication reasoning, we developed RxQA, a multiple-choice question benchmark derived from two national drug formularies (US, UK) and validated by board-certified pharmacists. While AMIE and PCPs both benefited from the ability to access external drug information, AMIE outperformed PCPs on higher difficulty questions. While further research would be needed before real-world translation, AMIE's strong performance across evaluations marks a significant step towards conversational AI as a tool in disease management. View details
    Preview abstract Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), have demonstrated significant potential in clinical reasoning skills such as history-taking and differential diagnosis generation—critical aspects of medical education. This work explores how LLMs can augment medical curricula through interactive learning. We conducted a participatory design process with medical students, residents and medical education experts to co-create an AI-powered tutor prototype for clinical reasoning. As part of the co-design process, we conducted a qualitative user study, investigating learning needs and practices via interviews, and conducting concept evaluations through interactions with the prototype. Findings highlight the challenges learners face in transitioning from theoretical knowledge to practical application, and how an AI tutor can provide personalized practice and feedback. We conclude with design considerations, emphasizing the importance of context-specific knowledge and emulating positive preceptor traits, to guide the development of AI tools for medical education. View details
    Day-of-the-week Awareness in Time of Day Breakpoints for Traffic Light Plans
    Ori Rottenstreich
    Eliav Buchnik
    Shai Ferster
    Tom Kalvari
    Ron Tsibulsky
    Danny Veikherman
    Jack Haddad
    2025
    Preview abstract Time-of-day breakpoints (TODs) refer to the times over the day in which the plan of a traffic light is changed. Traditionally, TODs are selected jointly for all weekdays (Monday-Friday), typically with additional TODs dedicated to weekends. In this paper, we present an alternative approach motivated by traffic characteristics that can differ among the weekdays Monday-Friday and consider TODs which are day-of-the-week aware. The traffic-aware approach studies similarities among days and computes TODs that can be shared among days with similar characteristics but can also have other forms for weekdays with unique characteristics. Based on traffic properties derived from anonymized trajectories, we apply the new methodology to compute time-of-day breakpoints that are day-of-the-week aware in the city of Rio de Janeiro, Brazil and estimate the impact of the new methodology. View details
    Fine-grained Measurement of Vehicle Delay Fairness
    Eliav Buchnik
    Tom Kalvari
    Jack Haddad
    Dan Karliner
    Danny Veikherman
    Ron Tsibulsky
    Shai Ferster
    Ori Rottenstreich
    2025
    Preview abstract Optimizing signal timing in traffic lights helps to improve traffic flow and reduce emissions through reducing delays. At intersections, vehicles from different movements observe different delays impacted by the traffic light plan. This paper analyzes delay fairness among various vehicles at intersections. We refer to three cities: Rio de Janeiro, Hamburg and Seattle with a total number of over 5100 intersections. We present an intuitive methodology to compute delay fairness based on Gini index, a common fairness measure in economics. We evaluate the fairness based on real traffic data and provide insights on the relationship of fairness with day hours and traffic demand. We also examine real changes in traffic light plans that occurred in practice to check whether improving delay is often aligned with increasing fairness. View details
    Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
    Aaron Bell
    Aviad Barzilai
    Roy Lee
    Gia Jung
    Charles Elliott
    Adam Boulanger
    Amr Helmy
    Jacob Bien
    Ruth Alcantara
    Nadav Sherman
    Hassler Thurston
    Yotam Gigi
    Bolous Jaber
    Vered Silverman
    Luke Barrington
    Tim Thelin
    Elad Aharoni
    Kartik Hegde
    Yuval Carny
    Shravya Shetty
    Yehonathan Refael
    Stone Jiang
    David Schottlander
    Juliet Rothenberg
    Luc Houriez
    Yochai Blau
    Joydeep Paul
    Yang Chen
    Yael Maguire
    Aviv Slobodkin
    Shlomi Pasternak
    Alex Ottenwess
    Jamie McPike
    Per Bjornsson
    Natalie Williams
    Reuven Sayag
    Thomas Turnbull
    Ali Ahmadalipour
    David Andre
    Amit Aides
    Ean Phing VanLee
    Niv Efron
    Monica Bharel
    arXiv (preprint 2025), arXiv, arXiv:2510.18318 https://doi.org/10.48550/arXiv.2510.18318 (2025)
    Preview abstract Geospatial data offers immense potential for understanding our planet. However, the sheer volume and diversity of this data along with its varied resolutions, timescales, and sparsity pose significant challenges for thorough analysis and interpretation. The emergence of Foundation Models (FMs) and Large Language Models (LLMs) offers an unprecedented opportunity to tackle some of this complexity, unlocking novel and profound insights into our planet. This paper introduces a comprehensive approach to developing Earth AI solutions, built upon foundation models across three key domains—Planet-scale Imagery, Population, and Environment—and an intelligent Gemini-powered reasoning engine. We present rigorous benchmarks showcasing the power and novel capabilities of our foundation models and validate that they provide complementary value to improve geospatial inference. We show that the synergy between these models unlocks superior predictive capabilities. To handle complex, multi-step queries, we developed a Gemini-powered agent that jointly reasons over our multiple foundation models along with large geospatial data sources and tools to unlock novel geospatial insights. On a new benchmark of real-world crisis scenarios, our agent demonstrates the ability to deliver critical and timely insights, effectively bridging the gap between raw geospatial data and actionable understanding. View details
    Study of Arterials in the City of Rio de Janeiro for Traffic Coordination
    Ori Rottenstreich
    Eliav Buchnik
    Danny Veikherman
    Dan Karliner
    Tom Kalvari
    Shai Ferster
    Ron Tsibulsky
    Jack Haddad
    2025
    Preview abstract Urban traffic congestion is a growing challenge, and optimizing signal timing strategies is crucial for improving traffic flow and reducing emissions. The coordination of signalized intersections improves both traffic operations and environmental aspects. Coordination is particularly important along arterials, sequences of signalized intersections that serve as the primary routes and carry a high volume of traffic. In this paper we analyze real data from the city of Rio de Janeiro to study properties of arterials. We refer to their length, the distance between intersections and to the properties of the traffic light plans such as cycle time. We then study their in practice level of coordination in terms of number of stops and their common locations along the arterials. We dive into particular arterials and provide insights that can be useful for efficient design of arterials in additional cities. Based on the analysis, we show how simple traffic properties can indicate the potential upon coordinating two adjacent intersections as part of an arterial in improving traffic performance. View details
    A unified acoustic-to-speech-to-language embedding space captures the neural basis of natural language processing in everyday conversations
    Uri Hasson
    Samuel A. Nastase
    Harshvardhan Gazula
    Aditi Rao
    Tom Sheffer
    Werner Doyle
    Orrin Devinsky
    aditi singh
    Adeen Flinker
    Patricia Dugan
    Bobbi Aubrey
    Sasha Devore
    Daniel Friedman
    Leonard Niekerken
    Catherine Kim
    Haocheng Wang
    Zaid Zada
    Gina Choe
    Nature Human Behaviour (2025)
    Preview abstract This study introduces a unified computational framework connecting acoustic, speech and word-level linguistic structures to study the neural basis of everyday conversations in the human brain. We used electrocorticography to record neural signals across 100 h of speech production and comprehension as participants engaged in open-ended real-life conversations. We extracted low-level acoustic, mid-level speech and contextual word embeddings from a multimodal speech-to-text model (Whisper). We developed encoding models that linearly map these embeddings onto brain activity during speech production and comprehension. Remarkably, this model accurately predicts neural activity at each level of the language processing hierarchy across hours of new conversations not used in training the model. The internal processing hierarchy in the model is aligned with the cortical hierarchy for speech and language processing, where sensory and motor regions better align with the model’s speech embeddings, and higher-level language areas better align with the model’s language embeddings. The Whisper model captures the temporal sequence of language-to-speech encoding before word articulation (speech production) and speech-to-language encoding post articulation (speech comprehension). The embeddings learned by this model outperform symbolic models in capturing neural activity supporting natural speech and language. These findings support a paradigm shift towards unified computational models that capture the entire processing hierarchy for speech comprehension and production in real-world conversations. View details
    LLM-based Lossless Text Simplification and its Effect on User Comprehension and Mental Load
    Theo Guidroz
    Diego Ardila
    Jimmy Li
    Adam Mansour
    Paul Jhun
    Nina Gonzalez
    Xiang Ji
    Mike Sanchez
    Sujay Kakarmath
    Miguel Ángel Garrido
    Faruk Ahmed
    Divyansh Choudhary
    Jay Hartford
    Georgina Xu
    Henry Serrano
    Yifan Wang
    Jeff Shaffer
    Eric (Yifan) Cao
    Sho Fujiwara
    Peggy Bui
    arXiv (2025)
    Preview abstract Information on the web, such as scientific publications and Wikipedia, often surpasses users' reading level. To help address this, we used a self-refinement approach to develop a LLM capability for minimally lossy text simplification. To validate our approach, we conducted a randomized study involving 4563 participants and 31 texts spanning 6 broad subject areas: PubMed (biomedical scientific articles), biology, law, finance, literature/philosophy, and aerospace/computer science. Participants were randomized to viewing original or simplified texts in a subject area, and answered multiple-choice questions (MCQs) that tested their comprehension of the text. The participants were also asked to provide qualitative feedback such as task difficulty. Our results indicate that participants who read the simplified text answered more MCQs correctly than their counterparts who read the original text (3.9% absolute increase, p<0.05). This gain was most striking with PubMed (14.6%), while more moderate gains were observed for finance (5.5%), aerospace/computer science (3.8%) domains, and legal (3.5%). Notably, the results were robust to whether participants could refer back to the text while answering MCQs. The absolute accuracy decreased by up to ~9% for both original and simplified setups where participants could not refer back to the text, but the ~4% overall improvement persisted. Finally, participants' self-reported perceived ease based on a simplified NASA Task Load Index was greater for those who read the simplified text (absolute change on a 5-point scale 0.33, p<0.05). This randomized study, involving an order of magnitude more participants than prior works, demonstrates the potential of LLMs to make complex information easier to understand. Our work aims to enable a broader audience to better learn and make use of expert knowledge available on the web, improving information accessibility. View details