Responsible AI

Our research in Responsible AI aims to shape the field of artificial intelligence and machine learning in ways that foreground the human experiences and impacts of these technologies. We examine and shape emerging AI models, systems, and datasets used in research, development, and practice. This research uncovers foundational insights and devises methodologies that define the state-of-the-art across the field. We advance equity, fairness, transparency, robustness, interpretability, and inclusivity as key elements of AI systems. For example, recent research evaluates the generalizability of the fairness properties of medical AI algorithms and discusses the cultural properties of fair AI systems globally. We strive to ensure that the promise of AI is realized beneficially for all individuals and communities, prioritizing social and contextual implications.

Recent Publications

Automatic Speech Recognition of Conversational Speech in Individuals with Disordered Speech
Bob MacDonald
Rus Heywood
Richard Cave
Katie Seaver
Antoine Desjardins
Jordan Green
Journal of Speech, Language, and Hearing Research (2024) (to appear)
Generative AI in Creative Practice: ML-Artist Folk Theories of T2I Use, Harm, and Harm-Reduction
Shalaleh Rismani
Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI '24), Association for Computing Machinery (2024), pp. 1-17 (to appear)
Take it, Leave it, or Fix it: Measuring Productivity and Trust in Human-AI Collaboration
29th International Conference on Intelligent User Interfaces (IUI ’24), ACM, New York, NY, USA (2024)
Generative models improve fairness of medical classifiers under distribution shifts
Ira Ktena
Olivia Wiles
Isabela Albuquerque
Sylvestre-Alvise Rebuffi
Ryutaro Tanno
Danielle Belgrave
Taylan Cemgil
Nature Medicine (2024)