Jump to Content

Generative AI in Creative Practice: ML-Artist Folk Theories of T2I Use, Harm, and Harm-Reduction

Shalaleh Rismani
Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI '24), Association for Computing Machinery (2024), pp. 1-17 (to appear)
Google Scholar

Abstract

Understanding how communities experience algorithms is necessary to mitigate potential harmful impacts. This paper presents folk theories of text-to-image (T2I) models to enrich understanding of how artist communities experience creative machine learning (ML) systems. This research draws on data collected from a workshop with 15 artists from 10 countries who incorporate T2I models in their creative practice. Through reflexive thematic analysis of workshop data, we highlight theorization of T2I use, harm, and harm-reduction. Folk theories of use envision T2I models as an artistic medium, a mundane tool, and locate true creativity as rising above model affordances. Theories of harm articulate T2I models as harmed by engineering efforts to eliminate glitches and product policy efforts to limit functionality. Theories of harm-reduction orient towards protecting T2I models for creative practice through transparency and distributed governance. We examine how these theories relate, and conclude by discussing how folk theorization informs responsible AI efforts.