Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10595 publications
Explainable Artificial Intelligence Techniques for Software Development Lifecycle: A phase-specific survey
Shashank Kapoor
Aman Raj
IEEE Compsac (2025)
Preview abstract
Artificial Intelligence (AI) is rapidly expanding and integrating more into daily life to automate tasks, guide decision-making and enhance efficiency. However, complex AI models, which make decisions without providing clear explanations (known as the "black-box problem"), currently restrict trust and widespread adoption of AI.
Explainable Artificial intelligence (XAI) has emerged to address the black-box problem of making AI systems more interpretable and transparent so stakeholders can trust, verify, and act upon AI-based outcomes. Researcher have come up with various techniques to foster XAI in Software Development Lifecycle. However, there are gaps in the application of XAI in Software Engineering phases. Literature shows that 68% of XAI in Software Engineering research focused on maintenance as opposed to 8% on software management and requirements [7].
In this paper we present a comprehensive survey of the applications of XAI methods (e.g., concept-based explanations, LIME/SHAP, rule extraction, attention mechanisms, counterfactual explanations, example-based explanations) to the different phases of Software Development Lifecycles (SDLC) mainly requirements elicitation, design and development, testing and deployment, and evolution.
To the best of our knowledge, this paper presents the first comprehensive survey of XAI techniques for every phase of the Software Development Life Cycle (SDLC). In doing so, we aim to promote explainable AI in Software Engineering and facilitate the use of complex AI models in AI-driven software development.
View details
Preview abstract
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative-but their effectiveness has not been systematically evaluated. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI agents on project-level Java migrations, with a specific focus on measuring an agent's ability to preserve program semantics and avoid reward hacking, which we argue requires projects with high test coverage for a rigorous and reliable evaluation. We benchmark several state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 52.3 percent of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. Our empirical study reveals failure modes of current AI agents in realistic Java modernization tasks, providing a foundation for evaluating trustworthy code-migration systems. By releasing FreshBrew, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
View details
The Case for Leveraging Transport Signals to Improve Internet Speed Test Efficiency
Cristina Leon
Computer Communication Review (2025) (to appear)
Preview abstract
Internet speed tests are an important tool to enable consumers and regulators to monitor the quality of Internet access. However, increased Internet speeds to the home and an increased demand for speed testing pose scaling challenges to providers of speed tests, who must maintain costly infrastructure to keep up with this demand. In recent years, this has led the popular NDT speed test to limit data transfer to a total of 250MB, which comes at the cost of accuracy for high bandwidth speed test clients.
In this paper, we observe that the NDT speed test server’s congestion control algorithm (BBRv1) is also trying to estimate the capacity of the connection. We leverage this observation and signals from BBR to improve the accuracy and efficiency of speed tests. We first show how leveraging signals from BBR can more than double the accuracy of a 10MB test–from 17% to 43%–for clients with speeds over 400Mbps.
We then show how using BBR signals to adaptively end the speed test reduces data transfer by 36% and increased accuracy by 13% for high bandwidth clients, relative to a 100MB fixed length test. Even accounting for clients that never observe enough samples to utilize the BBR signal, this adaptive approach still uses 25% less data than a fixed 100MB test with 37-44% higher accuracy.
View details
Preview abstract
Several systems rely on traceroute to track a large number of Internet paths as they change over time. Monitoring systems perform this task by remapping paths periodically or whenever a change is detected. This paper shows that such complete remapping is inefficient, because most path changes are localized to a few hops of a path. We develop RemapRoute, a tool to remap a path locally given the previously known path and a change point. RemapRoute sends targeted probes to locate and remap the often few hops that have changed. Our evaluation with trace-driven simulations and in a real deployment shows that local remapping reduces the average number of probes issued during remapping by 63% and 79%, respectively, when compared with complete remapping. At the same time, our results show that local remapping has little impact on the accuracy of inferred paths.
View details
Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models
Fei Wang
The Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025) (2025) (to appear)
Preview abstract
Retrieval-Augmented Generation (RAG), while effective in integrating external knowledge to address the limitations of large language models (LLMs), can be undermined by imperfect retrieval, which may introduce irrelevant, misleading, or even malicious information. Despite its importance, previous studies have rarely explored the behavior of RAG through joint analysis on how errors from imperfect retrieval attribute and propagate, and how potential conflicts arise between the LLMs' internal knowledge and external sources. We find that imperfect retrieval augmentation might be inevitable and quite harmful, through controlled analysis under realistic conditions. We identify the knowledge conflicts between LLM-internal and external knowledge from retrieval as a bottleneck to overcome in the post-retrieval stage of RAG. To render LLMs resilient to imperfect retrieval, we propose Astute RAG, a novel RAG approach that adaptively elicits essential information from LLMs' internal knowledge, iteratively consolidates internal and external knowledge with source-awareness, and finalizes the answer according to information reliability. Our experiments using Gemini and Claude demonstrate that Astute RAG significantly outperforms previous robustness-enhanced RAG methods. Notably, Astute RAG is the only approach that matches or exceeds the performance of LLMs without RAG under worst-case scenarios. Further analysis reveals that Astute RAG effectively resolves knowledge conflicts, improving the reliability and trustworthiness of RAG systems.
View details
Preview abstract
Obtaining accurate representations of the eigenstates of an array of coupled superconducting qubits is a crucial step in the design of circuit quantum electrodynamics (circuit-QED)-based quantum processors. However, exact diagonalization of the device Hamiltonian is challenging for system sizes beyond tens of qubits. Here, we employ a tensor network method based on the density matrix renormalization group (DMRG) algorithm, DMRG-X, to efficiently obtain localized eigenstates of a 2D transmon array without the need to first compute lower-energy states. We also introduce MTDMRG-X, a new algorithm that combines DMRG-X with multi-target DMRG to efficiently compute excited states even in regimes with strong eigenstate hybridization. We showcase the use of these methods for the analysis of long-range couplings in a multi-transmon Hamiltonian including qubits and couplers, and we discuss eigenstate localization. These developments facilitate the design and parameter optimization of large-scale superconducting quantum processors.
View details
InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
Jing Jin
Xiuxiu Yuan
Jun Jiang
Jingtao Zhou
Yiyi Huang
Zheng Xu
Kristen Wright
Jason Mayes
Mark Sherwood
Johnny Lee
Alex Olwal
Ram Iyengar
Na Li
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract
Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas.
View details
Dynamical-generative downscaling of climate model ensembles
Tapio Schneider
John Anderson
Proceedings of the National Academy of Sciences, 122 (2025), e2420288122
Preview abstract
Regional high-resolution climate projections are crucial for many applications, such as agriculture, hydrology, and natural hazard risk assessment. Dynamical downscaling, the state-of-the-art method to produce localized future climate information, involves running a regional climate model (RCM) driven by an Earth System Model (ESM), but it is too computationally expensive to apply to large climate projection ensembles. We propose an approach combining dynamical downscaling with generative AI to reduce the cost and improve the uncertainty estimates of downscaled climate projections. In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale. This approach leverages the generalizability of physics-based models and the sampling efficiency of diffusion models, enabling the downscaling of large multimodel ensembles. We evaluate our method against dynamically downscaled climate projections from the Coupled Model Intercomparison Project 6 (CMIP6) ensemble. Our results demonstrate its ability to provide more accurate uncertainty bounds on future regional climate than alternatives such as dynamical downscaling of smaller ensembles, or traditional empirical statistical downscaling methods. We also show that dynamical-generative downscaling results in significantly lower errors than popular statistical downscaling techniques, and captures more accurately the spectra, tail dependence, and multivariate correlations of meteorological fields. These characteristics make the dynamical-generative framework a flexible, accurate, and efficient way to downscale large ensembles of climate projections, currently out of reach for pure dynamical downscaling.
View details
Preview abstract
Most contextual bandit algorithms assume that rewards are bounded uniformly, or with a high probability for each context and action. Furthermore, the theoretical regret, as well as empirical performance of most prevailing methods scales polynomially with this reward scale. In this work, we use ideas from robust mean estimation to design contextual bandit algorithms where the regret has only a mild logarithmic scaling on the reward scale, with a polynomial dependence on the second moment rather than the maximum reward value. Our algorithm is based on Catoni's mean estimator, is applicable to arbitrary non-linear function classes, and we present both variance aware and variance agnostic versions of our approach.
View details
Procurement Auctions via Approximate Submodular Optimization
Amin Karbasi
Grigoris Velegkas
Forty-second International Conference on Machine Learning (2025)
Preview abstract
We study the problem of procurement auctions, in which an auctioneer seeks to acquire services from a group of strategic sellers with private costs. The quality of the services is measured through some \emph{submodular} function that is known to the auctioneer. Our goal is to design \emph{computationally efficient} procurement auctions that (approximately) maximize the difference between the quality of the acquired services and the total cost of the sellers, in a way that is incentive compatible (IC) and individual rational (IR) for the sellers, and generates non-negative surplus (NAS) for the auctioneer.
Leveraging recent results from the literature of \emph{non-positive} submodular function maximization, we design computationally efficient frameworks that transform submodular function optimization algorithms to \emph{mechanisms} that are IC and IR for the sellers, NAS for the auctioneer, and \emph{approximation-preserving}. Our frameworks are general and work both in the \emph{offline} setting where the auctioneer can observe the bids and the services of all the sellers simultaneously, and in the \emph{online} setting where the sellers arrive in an adversarial order and the auctioneer has to make an irrevocable decision whether to purchase their service or not. We further investigate whether it is possible to convert state-of-art submodular optimization algorithms into a descending auction. We focurs in the adversarial setting, meaning that the schedule of the descending prices is determined by an advesary. We show that a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare can be effectively converted to a descending auction in the adversarial setting in if and only if $\alpha \leq \frac 1 2$. Our result highlights the importance of a carefully designed schedule of descending prices to effectively convert a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare with $\alpha > \frac 1 2$ to a descending auction. We also further establish a connection between descending auctions and online submodular optimization algorithms.
We demonstrate the practical applications of our frameworks by instantiating them with different state-of-the-art submodular optimization algorithms and comparing their welfare performance through empirical experiments on publicly available datasets that consist of thousands of sellers.
View details
Preview abstract
In this article, we describe our human-centered research focused on understanding the role of collaboration and teamwork in productive software development. We describe creation of a logs-based metric to identify collaboration through observable events and a survey-based multi-item scale to assess team functioning.
View details
Preview abstract
We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods.
Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City.
View details
Linear Elastic Caching via Ski Rental
Todd Lipcon
The biennial Conference on Innovative Data Systems Research (2025)
Preview abstract
In this work we study the Linear Elastic Caching problem, where the goal is to minimize the total cost of a cache inclusive of not just its misses, but also its memory footprint integrated over time. We demonstrate a theoretical connection to the classic ski rental problem and propose a practical algorithm that combines online caching algorithms with ski rental policies. We also introduce a lightweight machine learning-based algorithm for ski rental that is optimized for production workloads and is easy to integrate within existing database systems. Evaluations on both production workloads in Google Spanner and publicly available traces show that the proposed elastic caching approach can significantly reduce the total cache cost compared to traditional fixed-size cache policies.
View details
Preview abstract
We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Rather than encoding the solution in a quantum state in a fashion analogous to prior quantum linear algebra solvers, our approach constructs the solution matrix X in a block-encoding, rescaled by some factor. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems.
View details
Advancing seasonal prediction of tropical cyclone activity with a hybrid AI-physics climate model
Gan Zhang
Megha Rao
Janni Yuval
Ming Zhao
Environmental Research Letters (2025)
Preview abstract
Machine learning (ML) models are successful with weather forecasting and have shown progress in climate simulations, yet leveraging them for useful climate predictions needs exploration. Here we show this feasibility using neural general circulation model (NeuralGCM), a hybrid ML-physics atmospheric model developed by Google, for seasonal predictions of large-scale atmospheric variability and Northern Hemisphere tropical cyclone (TC) activity. Inspired by physical model studies, we simplify boundary conditions, assuming sea surface temperature and sea ice follow their climatological cycle but persist anomalies present at the initialization time. With such forcings, NeuralGCM can generate 100 simulation days in ∼8 min with a single graphics processing unit while simulating realistic atmospheric circulation and TC climatology patterns. This configuration yields useful seasonal predictions (July–November) for the tropical atmosphere and various TC activity metrics. Notably, the predicted and observed TC frequency in the North Atlantic and East Pacific basins are significantly correlated during 1990–2023 (r = ∼0.7), suggesting prediction skill comparable to existing physical GCMs. Despite challenges associated with model resolution and simplified boundary forcings, the model-predicted interannual variations demonstrate significant correlations with the observed sub-basin TC tracks (p < 0.1) and basin-wide accumulated cyclone energy (ACE) (p < 0.01) of the North Atlantic and North Pacific basins. These findings highlight the promise of leveraging ML models with physical insights to model TC risks and deliver seamless weather-climate predictions.
View details