Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10128 publications
    Preview abstract This paper reflects on work at Google over the past decade to address common types of software safety and security defects. Our experience has shown that software safety is an emergent property of the software and tooling ecosystem it is developed in and the production environment into which it is deployed. Thus, to effectively prevent common weaknesses at scale, we need to shift-left the responsibility for ensuring safety and security invariants to the end-to-end developer ecosystem, that is, programming languages, software libraries, application frameworks, build and deployment tooling, the production platform and its configuration surfaces, and so forth. Doing so is practical and cost effective when developer ecosystems are designed with application archetypes in mind, such as web or mobile apps: The design of the developer ecosystem can address threat model aspects that apply commonly to all applications of the respective archetype, and investments to ensure safety invariants at the ecosystem level amortize across many applications. Applying secure-by-design principles to developer ecosystems at Google has achieved drastic reduction and in some cases near-zero residual rates of common classes of defects, across hundreds of applications being developed by thousands of developers. View details
    PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
    Adel Javanmard
    Proceedings of the 41st International Conference on Machine Learning (2024), pp. 21410-21429
    Preview abstract This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called \emph{bags} in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We propose the \texttt{PriorBoost} algorithm, which iteratively forms increasingly homogenous bags with respect to (unseen) individual responses to improve model quality. We also explore label differential privacy for aggregate learning, and provide extensive experiments that demonstrate that \PriorBoost regularly achieves optimal quality, in contrast to non-adaptive algorithms for aggregate learning. View details
    Preview abstract Browser fingerprinting is often associated with cross-site user tracking, a practice that many browsers (e.g., Safari, Brave, Edge, Firefox and Chrome) want to block. However, less is publicly known about its uses to enhance online safety, where it can provide an additional security layer against service abuses (e.g., in combination with CAPTCHAs) or during user authentication. To the best of our knowledge, no fingerprinting defenses deployed thus far consider this important distinction when blocking fingerprinting attempts, so they might negatively affect website functionality and security. To address this issue we make three main contributions. First, we propose and evaluate a novel machine learning-based method to automatically identify authentication pages (i.e. sign-in and sign-up pages). Our algorithm -- which relies on a hybrid unsupervised/supervised approach -- achieves 96-98% precision and recall on a large, manually-labelled dataset of 10,000 popular sites. Second, we compare our algorithm with other methods from prior works on the same dataset, showing that it significantly outperforms all of them (+83% F1-score). Third, we quantify the prevalence of fingerprinting scripts across sign-in and sign-up pages (9.2%) versus those executed on other pages (8.9%); while the rates of fingerprinting are similar, home pages and authentication pages differ in the third-party scripts they include and how often these scripts are labeled as tracking. We also highlight the substantial differences in fingerprinting behavior on login and sign-up pages. Our work sheds light on the complicated reality that fingerprinting is used to both protect user security and invade user privacy, and that this dual nature must be considered by fingerprinting mitigations. View details
    The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing
    Marc Shapiro
    Zebediah Engberg
    Tharun Sankar
    Marc E.J. Stettler
    Roger Teoh
    Ulrich Schumann
    Susanne Rohs
    Erica Brand
    Environmental Research Communications, 6 (2024), pp. 095015
    Preview abstract Previous work has shown that while the net effect of aircraft condensation trails (contrails) on the climate is warming, the exact magnitude of the energy forcing per meter of contrail remains uncertain. In this paper, we explore the skill of a Lagrangian contrail model (CoCiP) in identifying flight segments with high contrail energy forcing. We find that skill is greater than climatological predictions alone, even accounting for uncertainty in weather fields and model parameters. We estimate the uncertainty due to humidity by using the ensemble ERA5 weather reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) as Monte Carlo inputs to CoCiP. We unbias and correct under-dispersion on the ERA5 humidity data by forcing a match to the distribution of in situ humidity measurements taken at cruising altitude. We take CoCiP energy forcing estimates calculated using one of the ensemble members as a proxy for ground truth, and report the skill of CoCiP in identifying segments with large positive proxy energy forcing. We further estimate the uncertainty due to model parameters in CoCiP by performing Monte Carlo simulations with CoCiP model parameters drawn from uncertainty distributions consistent with the literature. When CoCiP outputs are averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%, while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown) contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail avoidance. View details
    AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation
    Yuanwen Yue
    Sabarinath Mahadevan
    Jonas Schult
    Francis Engelmann
    Bastian Leibe
    Konrad Schindler
    Theodora Kontogianni
    ICLR (2024)
    Preview abstract During interactive segmentation, a model and a user work together to delineate objects of interest in a 3D point cloud. In an iterative process, the model assigns each data point to an object (or the background), while the user corrects errors in the resulting segmentation and feeds them back into the model. The current best practice formulates the problem as binary classification and segments objects one at a time. The model expects the user to provide positive clicks to indicate regions wrongly assigned to the background and negative clicks on regions wrongly assigned to the object. Sequentially visiting objects is wasteful since it disregards synergies between objects: a positive click for a given object can, by definition, serve as a negative click for nearby objects. Moreover, a direct competition between adjacent objects can speed up the identification of their common boundary. We introduce AGILE3D, an efficient, attention-based model that (1) supports simultaneous segmentation of multiple 3D objects, (2) yields more accurate segmentation masks with fewer user clicks, and (3) offers faster inference. Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries as well as between them and the 3D scene through a click attention module. Every time new clicks are added, we only need to run a lightweight decoder that produces updated segmentation masks. In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art. Moreover, we also verify its practicality in real-world setups with real user studies. Project page: https://ywyue.github.io/AGILE3D. View details
    Towards Generalist Biomedical AI
    Danny Driess
    Andrew Carroll
    Chuck Lau
    Ryutaro Tanno
    Ira Ktena
    Anil Palepu
    Basil Mustafa
    Aakanksha Chowdhery
    Simon Kornblith
    Philip Mansfield
    Sushant Prakash
    Renee Wong
    Sunny Virmani
    Sara Mahdavi
    Bradley Green
    Ewa Dominowska
    Joelle Barral
    Karan Singhal
    Pete Florence
    NEJM AI (2024)
    Preview abstract BACKGROUND: Medicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery. METHODS: To catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports. RESULTS: We observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility. CONCLUSIONS: Although considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems. View details
    Making Images from Images: Tightly Constrained Parallel Denoising
    Ashwin Baluja
    European Conference on Computer Vision, AI for Visual Arts Workshop and Challenges (2024)
    Preview abstract We present methods to transform an image into a novel one of any subject matter simply by rearranging the image’s tiles. Our method extends and improves recent work in the generation of optical illusions by discovering the optimal arrangement of the image’s tiles simultaneously with the image generation. In addition to producing images that more accurately represent the subject matter, this technique allows us to address a much broader class of problems than previously possible. By learning the image transforms, we allow any source image to be pre- specified; any existing image (e.g. the Mona Lisa) can be transformed to a novel subject. We formulate this as a tightly constrained optimization problem and address it through alternating the steps of image diffusion and energy minimization using optimal matching. Under our formulation, a simple method to extend this to infinite copies of the source image is also given. Unlike previous methods, as the number of tiles grows the problem becomes easier and the results become better. View details
    Attribute First, then Generate: Locally-attributable Grounded Text Generation
    Aviv Slobodkin
    Eran Hirsch
    Arie Cattan
    Ido Dagan
    ACL (2024) (to appear)
    Preview abstract Recent efforts to address hallucinations in Large Language Models (LLMs) have focused on attributed text generation, which supplements generated texts with citations of supporting sources for post-generation fact-checking and corrections. Yet, these citations often point to entire documents or paragraphs, burdening users with extensive verification work. In this paper, we introduce a locally-attributable text generation approach, prioritizing concise attributions. Our method, named ``Attribute First, then Generate'', breaks down the conventional end-to-end generation process into three intuitive steps: content selection, sentence planning, and sequential sentence generation. By initially identifying relevant source segments (``select first'') and then conditioning the generation process on them (``then generate''), we ensure these segments also act as the output's fine-grained attributions (``select'' becomes ``attribute''). Tested on Multi-document Summarization and Long-form Question-answering, our method not only yields more concise citations than the baselines but also maintains - and in some cases enhances - both generation quality and attribution accuracy. Furthermore, it significantly reduces the time required for fact verification by human assessors. View details
    Bridging the Gap: Unpacking the Hidden Challenges in Knowledge Distillation for Online Ranking Systems
    Shuo Yang
    Aniruddh Nath
    Yang Liu
    Li Wei
    Shawn Andrews
    Maciej Kula
    Jarrod Kahn
    Zhe Zhao
    Lichan Hong
    Preview abstract Knowledge Distillation (KD) is a powerful approach for compressing large models into smaller, more efficient models, particularly beneficial for latency-sensitive applications like recommender systems. However, current KD research predominantly focuses on Computer Vision (CV) and NLP tasks, overlooking unique data characteristics and challenges inherent to recommender systems. This paper addresses these overlooked challenges, specifically: (1) mitigating data distribution shifts between teacher and student models, (2) efficiently identifying optimal teacher configurations within time and budgetary constraints, and (3) enabling computationally efficient and rapid sharing of teacher labels to support multiple students. We present a robust KD system developed and rigorously evaluated on multiple large-scale personalized video recommendation systems within Google. Our live experiment results demonstrate significant improvements in student model performance while ensuring the consistent and reliable generation of high-quality teacher labels from continuous data streams. View details
    Connecting Language Technologies with Rich, Diverse Data Sources Covering Thousands of Languages
    Sebastian Ruder
    Julia Kreutzer
    Clara Rivera
    Ishank Saxena
    Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
    Preview abstract Contrary to common belief, there are rich and diverse data sources available for many thousands of languages, which can be used to develop technologies for these languages. In this paper, we provide an overview of some of the major online data sources, the types of data that they provide access to, potential applications of this data, and the number of languages that they cover. Even this covers only a small fraction of the data that exists; for example, printed books are published in many languages but few online aggregators exist. View details
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    ILYA Drozdov
    Xiao Mi
    Alexis Morvan
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Gordon Hill
    Markus Hoffmann
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Seneca Meeks
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    David Rhodes
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Science, 384 (2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Quantifying urban park use in the USA at scale: empirical estimates of realised park usage using smartphone location data
    Michael T Young
    Swapnil Vispute
    Stylianos Serghiou
    Akim Kumok
    Yash Shah
    Kevin J. Lane
    Flannery Black-Ingersoll
    Paige Brochu
    Monica Bharel
    Sarah Skenazy
    Shailesh Bavadekar
    Mansi Kansal
    Evgeniy Gabrilovich
    Gregory A. Wellenius
    Lancet Planetary Health (2024)
    Preview abstract Summary Background A large body of evidence connects access to greenspace with substantial benefits to physical and mental health. In urban settings where access to greenspace can be limited, park access and use have been associated with higher levels of physical activity, improved physical health, and lower levels of markers of mental distress. Despite the potential health benefits of urban parks, little is known about how park usage varies across locations (between or within cities) or over time. Methods We estimated park usage among urban residents (identified as residents of urban census tracts) in 498 US cities from 2019 to 2021 from aggregated and anonymised opted-in smartphone location history data. We used descriptive statistics to quantify differences in park usage over time, between cities, and across census tracts within cities, and used generalised linear models to estimate the associations between park usage and census tract level descriptors. Findings In spring (March 1 to May 31) 2019, 18·9% of urban residents visited a park at least once per week, with average use higher in northwest and southwest USA, and lowest in the southeast. Park usage varied substantially both within and between cities; was unequally distributed across census tract-level markers of race, ethnicity, income, and social vulnerability; and was only moderately correlated with established markers of census tract greenspace. In spring 2019, a doubling of walking time to parks was associated with a 10·1% (95% CI 5·6–14·3) lower average weekly park usage, adjusting for city and social vulnerability index. The median decline in park usage from spring 2019 to spring 2020 was 38·0% (IQR 28·4–46·5), coincident with the onset of physical distancing policies across much of the country. We estimated that the COVID-19-related decline in park usage was more pronounced for those living further from a park and those living in areas of higher social vulnerability. Interpretation These estimates provide novel insights into the patterns and correlates of park use and could enable new studies of the health benefits of urban greenspace. In addition, the availability of an empirical park usage metric that varies over time could be a useful tool for assessing the effectiveness of policies intended to increase such activities. View details
    Socio-spatial equity analysis of relative wealth index and emergency obstetric care accessibility in urban Nigeria
    Kerry L. M. Wong
    Aduragbemi Banke-Thomas
    Tope Olubodun
    Peter M. Macharia
    Charlotte Stanton
    Narayanan Sundararajan
    Yash Shah
    Mansi Kansal
    Swapnil Vispute
    Olakunmi Ogunyemi
    Uchenna Gwacham-Anisiobi
    Jia Wang
    Ibukun-Oluwa Omolade Abejirinde
    Prestige Tatenda Makanga
    Bosede B. Afolabi
    Lenka Beňová
    Communications Medicine, 4 (2024), pp. 34
    Preview abstract Background Better geographical accessibility to comprehensive emergency obstetric care (CEmOC) facilities can significantly improve pregnancy outcomes. However, with other factors, such as affordability critical for care access, it is important to explore accessibility across groups. We assessed CEmOC geographical accessibility by wealth status in the 15 most-populated Nigerian cities. Methods We mapped city boundaries, verified and geocoded functional CEmOC facilities, and assembled population distribution for women of childbearing age and Meta’s Relative Wealth Index (RWI). We used the Google Maps Platform’s internal Directions Application Programming Interface to obtain driving times to public and private facilities. City-level median travel time (MTT) and number of CEmOC facilities reachable within 60 min were summarised for peak and non-peak hours per wealth quintile. The correlation between RWI and MTT to the nearest public CEmOC was calculated. Results We show that MTT to the nearest public CEmOC facility is lowest in the wealthiest 20% in all cities, with the largest difference in MTT between the wealthiest 20% and least wealthy 20% seen in Onitsha (26 vs 81 min) and the smallest in Warri (20 vs 30 min). Similarly, the average number of public CEmOC facilities reachable within 60 min varies (11 among the wealthiest 20% and six among the least wealthy in Kano). In five cities, zero facilities are reachable under 60 min for the least wealthy 20%. Those who live in the suburbs particularly have poor accessibility to CEmOC facilities. Conclusions Our findings show that the least wealthy mostly have poor accessibility to care. Interventions addressing CEmOC geographical accessibility targeting poor people are needed to address inequities in urban settings. View details
    Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
    Brenna Li
    Amy Wang
    Patricia Strachan
    Julie Anne Seguin
    Sami Lachgar
    Karyn Schroeder
    Renee Wong
    Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
    Preview abstract Although skin concerns are common, access to specialist care is limited. Artificial intelligence (AI)-assisted tools to support medical decisions may provide patients with feedback on their concerns while also helping ensure the most urgent cases are routed to dermatologists. Although AI-based conversational agents have been explored recently, how they are perceived by patients and clinicians is not well understood. We conducted a Wizard-of-Oz study involving 18 participants with real skin concerns. Participants were randomly assigned to interact with either a clinician agent (portrayed by a dermatologist) or an LLM agent (supervised by a dermatologist) via synchronous multimodal chat. In both conditions, participants found the conversation to be helpful in understanding their medical situation and alleviate their concerns. Through qualitative coding of the conversation transcripts, we provide insight on the importance of empathy and effective information-seeking. We conclude with design considerations for future AI-based conversational agents in healthcare settings. View details
    KATch: A Fast Symbolic Verifier for NetKAT
    Mark Moeller
    Jules Jacobs
    Olivier Savary Belanger
    David Darais
    Cole Schlesinger
    Nate Foster
    Alexandra Silva
    Programming Languages and Implementation (PLDI) (2024) (to appear)
    Preview abstract We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches. View details