Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10128 publications
Developer Ecosystems for Software Safety
Commun. ACM, 67 (2024), 52–60
Preview abstract
This paper reflects on work at Google over the past decade to address common types of software safety and security defects. Our experience has shown that software safety is an emergent property of the software and tooling ecosystem it is developed in and the production environment into which it is deployed. Thus, to effectively prevent common weaknesses at scale, we need to shift-left the responsibility for ensuring safety and security invariants to the end-to-end developer ecosystem, that is, programming languages, software libraries, application frameworks, build and deployment tooling, the production platform and its configuration surfaces, and so forth.
Doing so is practical and cost effective when developer ecosystems are designed with application archetypes in mind, such as web or mobile apps: The design of the developer ecosystem can address threat model aspects that apply commonly to all applications of the respective archetype, and investments to ensure safety invariants at the ecosystem level amortize across many applications.
Applying secure-by-design principles to developer ecosystems at Google has achieved drastic reduction and in some cases near-zero residual rates of common classes of defects, across hundreds of applications being developed by thousands of developers.
View details
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
Adel Javanmard
Proceedings of the 41st International Conference on Machine Learning (2024), pp. 21410-21429
Preview abstract
This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called \emph{bags} in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We propose the \texttt{PriorBoost} algorithm, which iteratively forms increasingly homogenous bags with respect to (unseen) individual responses to improve model quality. We also explore label differential privacy for aggregate learning, and provide extensive experiments that demonstrate that \PriorBoost regularly achieves optimal quality, in contrast to non-adaptive algorithms for aggregate learning.
View details
Preview abstract
Browser fingerprinting is often associated with cross-site user tracking, a practice that many browsers (e.g., Safari, Brave, Edge, Firefox and Chrome) want to block. However, less is publicly known about its uses to enhance online safety, where it can provide an additional security layer against service abuses (e.g., in combination with CAPTCHAs) or during user authentication. To the best of our knowledge, no fingerprinting defenses deployed thus far consider this important distinction when blocking fingerprinting attempts, so they might negatively affect website functionality and security.
To address this issue we make three main contributions. First, we propose and evaluate a novel machine learning-based method to automatically identify authentication pages (i.e. sign-in and sign-up pages). Our algorithm -- which relies on a hybrid unsupervised/supervised approach -- achieves 96-98% precision and recall on a large, manually-labelled dataset of 10,000 popular sites. Second, we compare our algorithm with other methods from prior works on the same dataset, showing that it significantly outperforms all of them (+83% F1-score). Third, we quantify the prevalence of fingerprinting scripts across sign-in and sign-up pages (9.2%) versus those executed on other pages (8.9%); while the rates of fingerprinting are similar, home pages and authentication pages differ in the third-party scripts they include and how often these scripts are labeled as tracking. We also highlight the substantial differences in fingerprinting behavior on login and sign-up pages.
Our work sheds light on the complicated reality that fingerprinting is used to both protect user security and invade user privacy, and that this dual nature must be considered by fingerprinting mitigations.
View details
The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing
Marc Shapiro
Zebediah Engberg
Tharun Sankar
Marc E.J. Stettler
Roger Teoh
Ulrich Schumann
Susanne Rohs
Erica Brand
Environmental Research Communications, 6 (2024), pp. 095015
Preview abstract
Previous work has shown that while the net effect of aircraft condensation trails (contrails) on the climate is warming, the exact magnitude of the energy forcing per meter of contrail remains uncertain. In this paper, we explore the skill of a Lagrangian contrail model (CoCiP) in identifying flight segments with high contrail energy forcing. We find that skill is greater than climatological predictions alone, even accounting for uncertainty in weather fields and model parameters. We estimate the uncertainty due to humidity by using the ensemble ERA5 weather reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) as Monte Carlo inputs to CoCiP. We unbias and correct under-dispersion on the ERA5 humidity data by forcing a match to the distribution of in situ humidity measurements taken at cruising altitude. We take CoCiP energy forcing estimates calculated using one of the ensemble members as a proxy for ground truth, and report the skill of CoCiP in identifying segments with large positive proxy energy forcing. We further estimate the uncertainty due to model parameters in CoCiP by performing Monte Carlo simulations with CoCiP model parameters drawn from uncertainty distributions consistent with the literature. When CoCiP outputs are averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%, while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown) contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail avoidance.
View details
AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation
Yuanwen Yue
Sabarinath Mahadevan
Jonas Schult
Francis Engelmann
Bastian Leibe
Konrad Schindler
Theodora Kontogianni
ICLR (2024)
Preview abstract
During interactive segmentation, a model and a user work together to delineate objects of interest in a 3D point cloud. In an iterative process, the model assigns each data point to an object (or the background), while the user corrects errors in the resulting segmentation and feeds them back into the model. The current best practice formulates the problem as binary classification and segments objects one at a time. The model expects the user to provide positive clicks to indicate regions wrongly assigned to the background and negative clicks on regions wrongly assigned to the object. Sequentially visiting objects is wasteful since it disregards synergies between objects: a positive click for a given object can, by definition, serve as a negative click for nearby objects. Moreover, a direct competition between adjacent objects can speed up the identification of their common boundary. We introduce AGILE3D, an efficient, attention-based model that (1) supports simultaneous segmentation of multiple 3D objects, (2) yields more accurate segmentation masks with fewer user clicks, and (3) offers faster inference. Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries as well as between them and the 3D scene through a click attention module. Every time new clicks are added, we only need to run a lightweight decoder that produces updated segmentation masks. In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art. Moreover, we also verify its practicality in real-world setups with real user studies. Project page: https://ywyue.github.io/AGILE3D.
View details
Towards Generalist Biomedical AI
Danny Driess
Andrew Carroll
Chuck Lau
Ryutaro Tanno
Ira Ktena
Anil Palepu
Basil Mustafa
Aakanksha Chowdhery
Simon Kornblith
Philip Mansfield
Sushant Prakash
Renee Wong
Sunny Virmani
Sara Mahdavi
Bradley Green
Ewa Dominowska
Joelle Barral
Karan Singhal
Pete Florence
NEJM AI (2024)
Preview abstract
BACKGROUND: Medicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery.
METHODS: To catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports.
RESULTS: We observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility.
CONCLUSIONS: Although considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems.
View details
Making Images from Images: Tightly Constrained Parallel Denoising
Ashwin Baluja
European Conference on Computer Vision, AI for Visual Arts Workshop and Challenges (2024)
Preview abstract
We present methods to transform an image into a novel one of any subject matter simply by rearranging the image’s tiles. Our method extends and improves recent work in the generation of optical illusions by discovering the optimal arrangement of the image’s tiles simultaneously with the image generation. In addition to producing images that more accurately represent the subject matter, this technique allows us to address a much broader class of problems than previously possible. By learning the image transforms, we allow any source image to be pre- specified; any existing image (e.g. the Mona Lisa) can be transformed to a novel subject. We formulate this as a tightly constrained optimization problem and address it through alternating the steps of image diffusion and energy minimization using optimal matching. Under our formulation, a simple method to extend this to infinite copies of the source image is also given. Unlike previous methods, as the number of tiles grows the problem becomes easier and the results become better.
View details
Preview abstract
Recent efforts to address hallucinations in Large Language Models (LLMs) have focused on attributed text generation, which supplements generated texts with citations of supporting sources for post-generation fact-checking and corrections. Yet, these citations often point to entire documents or paragraphs, burdening users with extensive verification work. In this paper, we introduce a locally-attributable text generation approach, prioritizing concise attributions. Our method, named ``Attribute First, then Generate'', breaks down the conventional end-to-end generation process into three intuitive steps: content selection, sentence planning, and sequential sentence generation. By initially identifying relevant source segments (``select first'') and then conditioning the generation process on them (``then generate''), we ensure these segments also act as the output's fine-grained attributions (``select'' becomes ``attribute''). Tested on Multi-document Summarization and Long-form Question-answering, our method not only yields more concise citations than the baselines but also maintains - and in some cases enhances - both generation quality and attribution accuracy. Furthermore, it significantly reduces the time required for fact verification by human assessors.
View details
Bridging the Gap: Unpacking the Hidden Challenges in Knowledge Distillation for Online Ranking Systems
Shuo Yang
Aniruddh Nath
Yang Liu
Li Wei
Shawn Andrews
Maciej Kula
Jarrod Kahn
Zhe Zhao
Lichan Hong
Preview abstract
Knowledge Distillation (KD) is a powerful approach for compressing large models into smaller, more efficient models, particularly beneficial for latency-sensitive applications like recommender systems. However, current KD research predominantly focuses on Computer Vision (CV) and NLP tasks, overlooking unique data characteristics and challenges inherent to recommender systems. This paper addresses these overlooked challenges, specifically: (1) mitigating data distribution shifts between teacher and student models, (2) efficiently identifying optimal teacher configurations within time and budgetary constraints, and (3) enabling computationally efficient and rapid sharing of teacher labels to support multiple students. We present a robust KD system developed and rigorously evaluated on multiple large-scale personalized video recommendation systems within Google. Our live experiment results demonstrate significant improvements in student model performance while ensuring the consistent and reliable generation of high-quality teacher labels from continuous data streams.
View details
Connecting Language Technologies with Rich, Diverse Data Sources Covering Thousands of Languages
Sebastian Ruder
Julia Kreutzer
Clara Rivera
Ishank Saxena
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Preview abstract
Contrary to common belief, there are rich and diverse data sources available for many thousands of languages, which can be used to develop technologies for these languages. In this paper, we provide an overview of some of the major online data sources, the types of data that they provide access to, potential applications of this data, and the number of languages that they cover. Even this covers only a small fraction of the data that exists; for example, printed books are published in many languages but few online aggregators exist.
View details
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Trond Andersen
Rhine Samajdar
Andre Petukhov
Jesse Hoke
Dmitry Abanin
ILYA Drozdov
Xiao Mi
Alexis Morvan
Charles Neill
Rajeev Acharya
Richard Ross Allen
Kyle Anderson
Markus Ansmann
Frank Arute
Kunal Arya
Juan Atalaya
Gina Bortoli
Alexandre Bourassa
Leon Brill
Michael Broughton
Bob Buckley
Tim Burger
Nicholas Bushnell
Juan Campero
Hung-Shen Chang
Jimmy Chen
Benjamin Chiaro
Desmond Chik
Josh Cogan
Roberto Collins
Paul Conner
William Courtney
Alex Crook
Ben Curtin
Agustin Di Paolo
Andrew Dunsworth
Clint Earle
Lara Faoro
Edward Farhi
Reza Fatemi
Vinicius Ferreira
Ebrahim Forati
Brooks Foxen
Gonzalo Garcia
Élie Genois
William Giang
Dar Gilboa
Raja Gosula
Alejo Grajales Dau
Steve Habegger
Michael Hamilton
Monica Hansen
Sean Harrington
Paula Heu
Gordon Hill
Markus Hoffmann
Trent Huang
Ashley Huff
Bill Huggins
Sergei Isakov
Justin Iveland
Cody Jones
Pavol Juhas
Marika Kieferova
Alexei Kitaev
Andrey Klots
Alexander Korotkov
Fedor Kostritsa
John Mark Kreikebaum
Dave Landhuis
Pavel Laptev
Kim Ming Lau
Lily Laws
Joonho Lee
Kenny Lee
Yuri Lensky
Alexander Lill
Wayne Liu
Salvatore Mandra
Orion Martin
Steven Martin
Seneca Meeks
Amanda Mieszala
Shirin Montazeri
Ramis Movassagh
Wojtek Mruczkiewicz
Ani Nersisyan
Michael Newman
JiunHow Ng
Murray Ich Nguyen
Tom O'Brien
Seun Omonije
Alex Opremcak
Rebecca Potter
Leonid Pryadko
David Rhodes
Charles Rocque
Negar Saei
Kannan Sankaragomathi
Henry Schurkus
Christopher Schuster
Mike Shearn
Aaron Shorter
Noah Shutty
Vladimir Shvarts
Vlad Sivak
Jindra Skruzny
Clarke Smith
Rolando Somma
George Sterling
Doug Strain
Marco Szalay
Doug Thor
Alfredo Torres
Guifre Vidal
Cheng Xing
Jamie Yao
Ping Yeh
Juhwan Yoo
Grayson Young
Yaxing Zhang
Ningfeng Zhu
Jeremy Hilton
Anthony Megrant
Yu Chen
Vadim Smelyanskiy
Vedika Khemani
Sarang Gopalakrishnan
Tomaž Prosen
Science, 384 (2024), pp. 48-53
Preview abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
View details
Quantifying urban park use in the USA at scale: empirical estimates of realised park usage using smartphone location data
Michael T Young
Swapnil Vispute
Stylianos Serghiou
Akim Kumok
Yash Shah
Kevin J. Lane
Flannery Black-Ingersoll
Paige Brochu
Monica Bharel
Sarah Skenazy
Shailesh Bavadekar
Mansi Kansal
Evgeniy Gabrilovich
Gregory A. Wellenius
Lancet Planetary Health (2024)
Preview abstract
Summary
Background A large body of evidence connects access to greenspace with substantial benefits to physical and mental
health. In urban settings where access to greenspace can be limited, park access and use have been associated with
higher levels of physical activity, improved physical health, and lower levels of markers of mental distress. Despite the
potential health benefits of urban parks, little is known about how park usage varies across locations (between or
within cities) or over time.
Methods We estimated park usage among urban residents (identified as residents of urban census tracts) in
498 US cities from 2019 to 2021 from aggregated and anonymised opted-in smartphone location history data. We
used descriptive statistics to quantify differences in park usage over time, between cities, and across census tracts
within cities, and used generalised linear models to estimate the associations between park usage and census tract
level descriptors.
Findings In spring (March 1 to May 31) 2019, 18·9% of urban residents visited a park at least once per week, with
average use higher in northwest and southwest USA, and lowest in the southeast. Park usage varied substantially
both within and between cities; was unequally distributed across census tract-level markers of race, ethnicity, income,
and social vulnerability; and was only moderately correlated with established markers of census tract greenspace. In
spring 2019, a doubling of walking time to parks was associated with a 10·1% (95% CI 5·6–14·3) lower average
weekly park usage, adjusting for city and social vulnerability index. The median decline in park usage from spring
2019 to spring 2020 was 38·0% (IQR 28·4–46·5), coincident with the onset of physical distancing policies across
much of the country. We estimated that the COVID-19-related decline in park usage was more pronounced for those
living further from a park and those living in areas of higher social vulnerability.
Interpretation These estimates provide novel insights into the patterns and correlates of park use and could enable
new studies of the health benefits of urban greenspace. In addition, the availability of an empirical park usage metric
that varies over time could be a useful tool for assessing the effectiveness of policies intended to increase such
activities.
View details
Socio-spatial equity analysis of relative wealth index and emergency obstetric care accessibility in urban Nigeria
Kerry L. M. Wong
Aduragbemi Banke-Thomas
Tope Olubodun
Peter M. Macharia
Charlotte Stanton
Narayanan Sundararajan
Yash Shah
Mansi Kansal
Swapnil Vispute
Olakunmi Ogunyemi
Uchenna Gwacham-Anisiobi
Jia Wang
Ibukun-Oluwa Omolade Abejirinde
Prestige Tatenda Makanga
Bosede B. Afolabi
Lenka Beňová
Communications Medicine, 4 (2024), pp. 34
Preview abstract
Background
Better geographical accessibility to comprehensive emergency obstetric care (CEmOC) facilities can significantly improve pregnancy outcomes. However, with other factors, such as affordability critical for care access, it is important to explore accessibility across groups. We assessed CEmOC geographical accessibility by wealth status in the 15 most-populated Nigerian cities.
Methods
We mapped city boundaries, verified and geocoded functional CEmOC facilities, and assembled population distribution for women of childbearing age and Meta’s Relative Wealth Index (RWI). We used the Google Maps Platform’s internal Directions Application Programming Interface to obtain driving times to public and private facilities. City-level median travel time (MTT) and number of CEmOC facilities reachable within 60 min were summarised for peak and non-peak hours per wealth quintile. The correlation between RWI and MTT to the nearest public CEmOC was calculated.
Results
We show that MTT to the nearest public CEmOC facility is lowest in the wealthiest 20% in all cities, with the largest difference in MTT between the wealthiest 20% and least wealthy 20% seen in Onitsha (26 vs 81 min) and the smallest in Warri (20 vs 30 min). Similarly, the average number of public CEmOC facilities reachable within 60 min varies (11 among the wealthiest 20% and six among the least wealthy in Kano). In five cities, zero facilities are reachable under 60 min for the least wealthy 20%. Those who live in the suburbs particularly have poor accessibility to CEmOC facilities.
Conclusions
Our findings show that the least wealthy mostly have poor accessibility to care. Interventions addressing CEmOC geographical accessibility targeting poor people are needed to address inequities in urban settings.
View details
Conversational AI in health: Design considerations from a Wizard-of-Oz dermatology case study with users, clinicians and a medical LLM
Brenna Li
Amy Wang
Patricia Strachan
Julie Anne Seguin
Sami Lachgar
Karyn Schroeder
Renee Wong
Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp. 10
Preview abstract
Although skin concerns are common, access to specialist care is limited. Artificial intelligence (AI)-assisted tools to support medical decisions may provide patients with feedback on their concerns while also helping ensure the most urgent cases are routed to dermatologists. Although AI-based conversational agents have been explored recently, how they are perceived by patients and clinicians is not well understood. We conducted a Wizard-of-Oz study involving 18 participants with real skin concerns. Participants were randomly assigned to interact with either a clinician agent (portrayed by a dermatologist) or an LLM agent (supervised by a dermatologist) via synchronous multimodal chat. In both conditions, participants found the conversation to be helpful in understanding their medical situation and alleviate their concerns. Through qualitative coding of the conversation transcripts, we provide insight on the importance of empathy and effective information-seeking. We conclude with design considerations for future AI-based conversational agents in healthcare settings.
View details
KATch: A Fast Symbolic Verifier for NetKAT
Mark Moeller
Jules Jacobs
Olivier Savary Belanger
David Darais
Cole Schlesinger
Nate Foster
Alexandra Silva
Programming Languages and Implementation (PLDI) (2024) (to appear)
Preview abstract
We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches.
View details