Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 11117 publications
    Responsive User Interfaces Based on Task Criticality and User Context
    Colby Hawker
    Wendy Yun
    Ram Vivekananda
    Shantanu Pai
    TDCommons (2026)
    Preview abstract Responsive user interfaces enable dynamically adjusting user interfaces based on device-specific aspects such as screen size, aspect ratio, display resolution, etc. However, traditional responsive design fails to account for different types of constraints of a user and task criticality of the task being performed via the UI. Misalignment between the UI design, user context and task criticality can lead to user error. This disclosure describes techniques, implemented with user permission, for dynamically modifying the layout, information density, and/or interactive physics of a user interface based on a dual-factor analysis of user cognitive state and task criticality. The user's cognitive state can be inferred from behavioral telematics. Task criticality can be inferred from semantic analysis. The information density and other parameters of a user interface are automatically adjusted based on such analyses. Such adjustments include applying or relaxing restrictions on interactivity and adjusting visual prominence of various UI elements to adjust the information density of the user interface. The adjustments can also include adjusting friction as appropriate, hiding certain aspects of the user interface, or other types of adjustments. View details
    Preview abstract Despite advances in high performance computing, accurate numerical simulations of global atmospheric dynamics remain a challenge. The resolution required to fully resolve the vast range scales as well as the strong coupling with—often not fully-understood—physics renders such simulations computationally infeasible over time horizons relevant for long-term climate risk assessment. While data-driven parameterizations have shown some promise of alleviating these obstacles, the scarcity of high-quality training data and their lack of long-term stability typically hinders their ability to capture the risk of rare extreme events. In this work we present a general strategy for training variational (probabilistic) neural network models to non-intrusively correct under-resolved long-time simulations of turbulent climate systems. The approach is based on the paradigm introduced by Barthel Sorensen et al. (2024, https://doi.org/10.1029/2023ms004122) which involves training a post-processing correction operator on under-resolved simulations nudged toward a high-fidelity reference. Our variational framework enables us to learn the dynamics of the underlying system from very little training data and thus drastically improve the extrapolation capabilities of the previous deterministic state-of-the art—even when the statistics of that training data are far from converged. We investigate and compare three recently introduced variational network architectures and illustrate the benefits of our approach on an anisotropic quasi-geostrophic flow. For this prototype model our approach is able to not only accurately capture global statistics, but also the anistropic regional variation and the statistics of multiple extreme event metrics—demonstrating significant improvement over previously introduced deterministic architectures. View details
    Preview abstract Generative AI is reshaping software development, yet its psychological impact remains under-researched. During May and August 2025 we conducted reflexive thematic analysis of interviews with 12 senior engineers (≥5 years experience) recruited from Western technology hubs to explore shifts in professional identity. We identify a central transition from "coder to conductor," where AI acts as a cognitive partner. Key findings include: (1) a re-architecting of focus from implementation to strategy; (2) a shift in productivity metrics from output to impact; and (3) a dual-impact on agency, where AI empowers autonomy but threatens competence through de-skilling anxieties. These findings suggest that as implementation becomes commoditised, organisational training and career progression must prioritise architectural mastery and metacognitive oversight to ensure sustained developer motivation and system integrity. View details
    Preview abstract This article delves into how Google Site Reliability Engineers (SREs) leverage Gemini 3 and the Gemini CLI to aggressively reduce Mean Time to Mitigation (MTTM) during real-world outages. By focusing on the SRE motto of "Eliminate Toil," the article walks through a simulated incident, demonstrating how an agentic CLI acts as a human-in-the-loop copilot across the entire incident lifecycle: from initial paging and investigation, through safe, tool-driven mitigation and root cause analysis, to automated postmortem generation and action item filing. This direct integration of Gemini's reasoning capabilities with operational data and internal tools creates a virtuous cycle where past incident learnings continuously inform and improve future solutions. View details
    ALF: Advertiser Large Foundation Model for Multi-Modal Advertiser Understanding
    Sunny Rajagopalan
    Alireza Golestaneh
    Shubhra Chandra
    Min Zhou
    Jonathan Vronsky
    Songbai Yan
    2026
    Preview abstract We present ALF (Advertiser Large Foundation model), a multi-modal transformer architecture for understanding advertiser behavior and intent across text, image, video and structured data modalities. Through contrastive learning and multi-task optimization, ALF creates unified advertiser representations that capture both content and behavioral patterns. Our model achieves state-of-the-art performance on critical tasks including fraud detection, policy violation identification, and advertiser similarity matching. In production deployment, ALF reduces false positives by 90\% while maintaining 99.8\% precision on abuse detection tasks. The architecture's effectiveness stems from its novel combination of multi-modal transformations, intersample attention mechanism, spectrally normalized projections, and calibrated probabilistic outputs. View details
    Preview abstract The advent of 3D Gaussian Splatting has revolutionized graphics rendering by offering high visual quality and fast rendering speed. However, training large-scale scenes at high quality remains challenging due to the substantial memory demands required to store Gaussians and optimizer states. To address these limitations, we propose GS-Offload, fast and memory-efficient training system for 3D Gaussian Splatting. GS-Offload stores Gaussians and optimizer states in host memory and selectively transfer only the necessary data to GPU memory on demand, significantly reducing GPU memory usage. With carefully designed software pipelining and CPU-side optimizer acceleration, GS-Offload achieves training speed near that of GPU-only setups, while significantly lowering GPU memory demands. View details
    CrossCheck: Input Validation for WAN Control Systems
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    Preview abstract There are growing concerns about AI-generated image-based sexual abuse (AI-IBSA), also known as nonconsensual sexualized ′deepfakes.′ Empirical research on AI-IBSA, however, remains very limited. This study surveyed 7231 respondents across Australia, the United Kingdom, and the United States to investigate community attitudes and perceptions on AI-IBSA. Through a vignette study, we explored the relationship between public familiarity with AI-IBSA, normative concerns about consent, and context-dependent judgments that vary based on the target's identity relational status, and how the content was used. Our findings reveal strong condemnation of AI-IBSA, yet respondents demonstrated low familiarity with the technology and their views varied depending on particular contexts. AI-IBSA targeting intimate partners was viewed as more unacceptable than targeting celebrities, and content created solely for personal use was seen as less unacceptable than content intended for distribution. The study highlights the need for approaches that go beyond technical fixes and punitive measures, advocating for a multifaceted response that integrates ethical data governance, digital sexual literacy, and restorative justice approaches. View details
    Phoenix: Rowhammer Attacks on DDR5 with Self-Correcting Synchronization
    Michele Marazzi
    Kaveh Razavi
    Salman Qazi
    Diego Meyer
    Patrick Jattke
    IEEE Security & Privacy (S&P) (2026)
    Preview
    Preview abstract How many T gates are needed to approximate an arbitrary n-qubit quantum state to within a given precision ϵ? Improving prior work of Low, Kliuchnikov and Schaeffer, we show that the optimal asymptotic scaling is Θ(sqrt{2^n log(1/ε)} + log(1/ε)) if we allow an unlimited number of ancilla qubits. We also show that this is the optimal T-count for implementing an arbitrary diagonal n-qubit unitary to within error ϵ. We describe an application to batched synthesis of single-qubit unitaries: we can approximate a tensor product of m = O(log log(1/ϵ)) arbitrary single-qubit unitaries to within error ϵ with the same asymptotic T-count as is required to approximate just one single-qubit unitary. View details
    ARM MTE Performance in Practice
    Taehyun Noh
    Yingchen Wang
    Tal Garfinkel
    Mahesh Madhav
    Mattan Erez
    Shravan Narayan
    Usenix Security (2026)
    Preview
    A Computer Vision Problem in Flatland
    Erin Connelly
    Annalisa Crannell
    Timothy Duff
    Rekha R. Thomas
    SIAM Journal on Applied Algebra and Geometry, 10 (2026), pp. 14-45
    Preview abstract When is it possible to project two sets of labeled points of equal cardinality lying in a pair of projective planes to the same image on a projective line? We give a complete answer to this question, obtaining the following results. We first show that such a pair of projections exist if and only if the two point sets are themselves images of a common point set in projective space. Moreover, we find that for generic pairs of point sets, a common projection exists if and only if their cardinality is at most seven. In these cases, we give an explicit description of the loci of projection centers that enable a common image. View details
    Preview abstract Audio Description ( AD) provides essential access to visual media for blind and low vision ( BLV) audiences. Yet current AD production tools remain largely inaccessible to BLV video creators, who possess valuable expertise but face barriers due to visually- driven interfaces. We present ADCanvas, a multimodal authoring system that supports non- visual control over audio description ( AD) creation. ADCanvas combines conversational interaction with keyboard- based playback control and a plain- text, screen reader– accessible editor to support end- to- end AD authoring and visual question answering ( VQA). Combining screen- reader- friendly controls with a multimodal LLM agent, ADCanvas supports live VQA, script generation, and AD modification. Through a user study with 12 BLV video creators, we find that users adopt the conversational agent as an informational aide and drafting assistant, while maintaining agency through verification and editing. For example, participants saw themselves as curators who received information from the model and filtered it down for their audience. Our findings offer design implications for accessible media tools, including precise editing controls, accessibility support for creative ideation, and configurable rules for human- AI collaboration. View details
    Robust Wireless Resource Allocation Against Adversarial Jamming
    Christos Tsoufis
    Dionysia Triantafyllopoulou
    Klaus Moessner
    ICC (2026)
    Preview abstract We study the problem of allocating access point bandwidth to users of a wireless network in the presence of adversarial jamming. Specifically, we consider a setting in which the network designer acts first and allocates access point bandwidth to the users of the network, before an adversary applies a jamming strategy to reduce the bandwidth of a subset (or all) of the access points. We consider a strong adversary who has complete information and can optimize the jamming strategy, subject to power budget constraints. In turn, the network designer must allocate the resources in anticipation of the adversary's actions. We explain that our model gives rise to a special network interdiction model, which differs from the standard setting in two ways: The first is that the interdictor is given the benefit of responding, rather than leading the game. The second is that the interdiction is fractional and performed at the node level of the network. The interdiction then propagates to all edges incident to the access point. In terms of technical results, we provide an allocation algorithm that is based on linear programming duality and show that the algorithm can solve the problem optimally, assuming knowledge of the adversary's budget constraints. We conduct experiments on synthetic data to show the extent to which the algorithm improves the total utilized bandwidth over the algorithm that optimizes bandwidth allocation while being oblivious to the adversary's existence. View details
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    ×