Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10129 publications
    DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
    Yair Schiff
    Jeff Parker
    Volodymyr Kuleshov
    International Conference on Machine Learning (ICML) (2024)
    Preview abstract Learning dynamics from dissipative chaotic systems is notoriously difficult due to their inherent instability, as formalized by their positive Lyapunov exponents, which exponentially amplify errors in the learned dynamics. However, many of these systems exhibit ergodicity and an attractor: a compact and highly complex manifold, to which trajectories converge in finite-time, that supports an invariant measure, i.e., a probability distribution that is invariant under the action of the dynamics, which dictates the long-term statistical behavior of the system. In this work, we leverage this structure to propose a new framework that targets learning the invariant measure as well as the dynamics, in contrast with typical methods that only target the misfit between trajectories, which often leads to divergence as the trajectories’ length increases. We use our framework to propose a tractable and sample efficient objective that can be used with any existing learning objectives. Our Dynamics Stable Learning by Invariant Measure (DySLIM) objective enables model training that achieves better point-wise tracking and long-term statistical accuracy relative to other learning objectives. By targeting the distribution with a scalable regularization term, we hope that this approach can be extended to more complex systems exhibiting slowly-variant distributions, such as weather and climate models. Code to reproduce our experiments is available here: https://github.com/google-research/swirl-dynamics/tree/main/swirl_dynamics/projects/ergodic. View details
    Preview abstract Personalized recommendation requires understanding both the candidate items and user preferences. Traditional collaborative filtering approaches rely on embedding users and items in the same representation space while recent efforts formulate the problem into sequential user activity modeling and future activity prediction tasks. Some of the most recent efforts leverage autoregressive large language models to directly generate the recommendation. This work proposes CALRec, a sequential recommendation framework aligning the generative task based on PaLM-2 LLM with contrastive learning tasks for user/item understanding. To leverage the strong generalization capabilities of the state-of-the-art pretrained LLMs, our input consists of pure texts following differentiable text templates for user inputs and item inputs. We propose novel ways of combining generative loss and contrastive losses in multi-category joint continuous pretraining, followed by domain-specific finetuning. During training, the LLM backbone trains in a two-tower fashion to comprehend users’ consecutive behaviors and descriptions of individual items. Our model outperforms many state-of-the-art baselines significantly especially in ranking tasks. Our systematic ablation study reveals that (i) multi-category pretraining and domain-adaptation finetuning are both important and deliver better performance when combined, and (ii) contrastive alignment further improves the quality among many categories of the Amazon review dataset. View details
    Analysis of objective and subjective sleep metrics and smartphone usage patterns
    Conor Heneghan
    Daniel McDuff
    Ari Winbush
    Nicholas Allen
    John Hernandez
    Allen Jiang
    Andrew Barakat
    Logan Schneider
    Benjamin Nelson
    Ben Yetton
    Preview abstract Analysis of objective and subjective sleep metrics and smartphone usage patterns Conor Heneghan, , Daniel McDuff, Ari Winbush, Nicholas Allen, John Hernandez, Allen Jiang,, Andrew Barakat, Logan Schneider, Benjamin Nelson, Ben Yetton Consumer Health Research Team, Google Inc. Department of Psychology, University of Oregon Verily Life Sciences Department of Psychiatry, Harvard Medical School and Beth Israel Deaconess Medical Center Introduction: The Digital Wellbeing Study is an IRB approved joint study between the University of Oregon and Google to investigate how smartphone usage interacts with objective and subjective parameters of well-being such as sleep, exercise and stress. The study recruited a demographically diverse population who each wore a smartwatch and installed a smartphone app linked to the study. Participants completed demographic and health questionnaires including the PROMIS Sleep Disturbance (SD) Short Form. Aims of the study included (a) whether objective sleep duration was correlated with smartphone use, and (b) whether smartphone usage could predict the subjective self reported sleep instrument. Methods: There was sufficient data from 7,499 users to conduct a population modeling analysis. An Ordinary Least Squares linear model was used as a predictor of each subject’s average total sleep time (TST) and their SD t-score. The inputs to the model included demographics, and population z-scored activity measures (steps, sedentary time, time driving, time at work, home and other locations, phone screen time, frequency of phone unlocks) over seven days prior to the survey. Results: The activity measures and baseline demographics could only explain a small amount of the overall variance in TST and SD (R^2=0.04 for TST and R^2=0.05 for SD). Phone screen time was a statistically significant predictor of both TST (-8.19 mins, p< 0.001) and self-reported sleep disruption (0.611 t-score units, p< 0.001). The number of phone unlocks was a predictor of variability in TST (-3.33 mins, p< 0.001) suggesting that longer session times are correlated with greater TST variability. The effects are minimal (e.g., a subject who has one standard deviation greater phone screen time than average would be predicted to only see a 2% reduction in TST, and a 0.6% increase in perceived sleep disturbance). Time driving and step count were also minor predictors of SD and TST. Conclusion: At a population level, average activity measures from wearables and smartphones such as steps, smartphone usage time, sedentary activity etc. are limited predictors of objective sleep metrics such as Total Sleep Time, and subjective sleep metrics such as the PROMIS Sleep Disturbance t-score. Support (if any): This research was funded by Google Inc. View details
    Preview abstract This is the seventh installment of the Developer Productivity for Humans column. This installment focuses on software quality: what it means, how developers see it, how we break it down into 4 types of quality, and the impact these have on each other. View details
    Preview abstract Knowledge-grounded dialogue generation is a challenging task because it requires satisfying two fundamental yet often competing constraints: being responsive in a manner that is specific to what the conversation partner has said while also being attributable to an underlying source document. In this work, we bring this trade-off between these two objectives (specificity and attribution) to light and ask the question: Can explicit content planning before the response generation help the model to address this challenge? To answer this question, we design a framework called PLEDGE, which allows us to experiment with various plan variables explored in prior work, supporting both metric-agnostic and metric-aware approaches. While content planning shows promise, our results on whether it can actually help to navigate this trade-off are mixed -- planning mechanisms that are metric-aware (use automatic metrics during training) are better at automatic evaluations but underperform in human judgment compared to metric-agnostic mechanisms. We discuss how this may be caused by over-fitting to automatic metrics and the need for future work to better calibrate these metrics towards human judgment. We hope the observations from our analysis will inform future work that aims to apply content planning in this context. View details
    Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs
    Charly Castes
    29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4 (ASPLOS '24) (2024)
    Preview abstract Confidential VMs on platforms such as Intel TDX, AMD SEV and Arm CCA promise greater security for cloud users against even a hypervisor-level attacker, but this promise has been shattered by repeated transient-execution vulnerabilities and CPU bugs. At the root of this problem lies the need to multiplex CPU cores with all their complex microarchitectural state among distrusting entities, with an untrusted hypervisor in control of the multiplexing. We propose core-gapped confidential VMs, a set of software-only modifications that ensure that no distrusting code shares a core, thus removing all same-core side-channels and transient-execution vulnerabilities from the guest’s TCB. We present an Arm-based prototype along with a performance evaluation showing that, not only does core-gapping offer performance competitive with non-confidential VMs, the greater locality achieved by avoiding shared cores can even improve performance for CPU-intensive workloads. View details
    Data Exchange Markets via Utility Balancing
    Aditya Bhaskara
    Sungjin Im
    Kamesh Munagala
    Govind S. Sankar
    WebConf (2024)
    Preview abstract This paper explores the design of a balanced data-sharing marketplace for entities with heterogeneous datasets and machine learning models that they seek to refine using data from other agents. The goal of the marketplace is to encourage participation for data sharing in the presence of such heterogeneity. Our market design approach for data sharing focuses on interim utility balance, where participants contribute and receive equitable utility from refinement of their models. We present such a market model for which we study computational complexity, solution existence, and approximation algorithms for welfare maximization and core stability. We finally support our theoretical insights with simulations on a mean estimation task inspired by road traffic delay estimation. View details
    Federated Variational Inference: Towards Improved Personalization and Generalization
    Elahe Vedadi
    Josh Dillon
    Philip Mansfield
    Karan Singhal
    Arash Afkanpour
    Warren Morningstar
    AAAI Federated Learning on the Edge Symposium (2024)
    Preview abstract Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks. View details
    FieldSwap: Data Augmentation for Effective Form-Like Document Extraction
    Seth Ebner
    IEEE 40th International Conference on Data Engineering (ICDE) (2024), pp. 4722-4732
    Preview abstract Extracting structured data from visually rich documents like invoices, receipts, financial statements, and tax forms is key to automating many business workflows. However, building extraction models in this domain often demands a large collection of high-quality training examples. To address this challenge, we introduce FieldSwap, a novel data augmentation technique specifically designed for such extraction problems. FieldSwap generates synthetic training examples by replacing key phrases indicative of one field with those corresponding to another. Our experiments on five diverse datasets demonstrate that incorporating FieldSwap-augmented data into the training process can enhance model performance by 1-11 F1 points, particularly when dealing with limited training data (10--100 documents). Additionally, we propose algorithms for automatically inferring key phrases from the training data. Our findings indicate that FieldSwap is effective regardless of whether key phrases are manually provided by human experts or inferred automatically. View details
    Preview abstract There is a potential future where the content created by a human and an AI are indistinguishable. In this future, if you can’t tell the difference, does it matter? We conducted a 3 (Assigned creator: human, human with AI assistance, AI) by 4 (Context: news, travel, health, and jokes) mixed-design experiment where participants evaluated human-written content that was presented as created by a human, a human with AI assistance, or an AI. We found that participants felt more negatively about the content creator and were less satisfied when they thought AI was used, but assigned creator had no effect on content judgments. We also identified five interpretations for how participants thought AI use affected the content creation process. Our work suggests that informing users about AI use may not have the intended effect of helping consumers make content judgments and may instead damage the relationship between creators and followers. View details
    Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program
    Neil S. Zheng
    Jeffrey Annis
    Hiral Master
    Lide Han
    Karla Gleichauf
    Melody Nasser
    Peyton Coleman
    Stacy Desine
    Douglas M. Ruderfer
    John Hernandez
    Logan D. Schneider
    Evan L. Brittain
    Nature Medicine (2024)
    Preview abstract Poor sleep health is associated with increased all-cause mortality and incidence of many chronic conditions. Previous studies have relied on cross-sectional and self-reported survey data or polysomnograms, which have limitations with respect to data granularity, sample size and longitudinal information. Here, using objectively measured, longitudinal sleep data from commercial wearable devices linked to electronic health record data from the All of Us Research Program, we show that sleep patterns, including sleep stages, duration and regularity, are associated with chronic disease incidence. Of the 6,785 participants included in this study, 71% were female, 84% self-identified as white and 71% had a college degree; the median age was 50.2 years (interquartile range = 35.7, 61.5) and the median sleep monitoring period was 4.5 years (2.5, 6.5). We found that rapid eye movement sleep and deep sleep were inversely associated with the odds of incident atrial fibrillation and that increased sleep irregularity was associated with increased odds of incident obesity, hyperlipidemia, hypertension, major depressive disorder and generalized anxiety disorder. Moreover, J-shaped associations were observed between average daily sleep duration and hypertension, major depressive disorder and generalized anxiety disorder. These findings show that sleep stages, duration and regularity are all important factors associated with chronic disease development and may inform evidence-based recommendations on healthy sleeping habits. View details
    Preview abstract Algorithms for the computation of alternative routes in road networks power many geographic navigation systems. A good set of alternative routes offers meaningful options to the user of the system and can support applications such as routing that is robust to failures (e.g., road closures, extreme traffic congestion, etc.) and routing with diverse preferences and objective functions. Algorithmic techniques for alternative route computation include the penalty method, via-node type algorithms (which deploy bidirectional search and finding plateaus), and, more recently, electrical-circuit based algorithms. In this work we focus on the practically important family of via-node type algorithms and we aim to produce high quality alternative routes for road netowrks. We study alternative route computation in the presence of a fast routing infrastructure that relies on hierarchical routing (namely, CRP). We propose new approaches that rely on deep learning methods. Our training methodology utilizes the hierarchical partition of the graph and builds models to predict which boundary road segments in the partition should be crossed by the alternative routes. We describe our methods in detail and evaluate them against the previously studied architectures, as well as against a stronger baseline that we define in this work, showing improvements in quality in the road networks of Seattle, Paris, and Bangalore. View details
    Meta Lifelong-Learning With Selective and Task-Aware Adaptation
    Thanapapas Horsuwan
    Kasidis Kanwatchara
    Boonserm Kijsirikul
    Peerapon Vateekul
    IEEE Access, 12 (2024), pp. 34099-34115
    Preview abstract Meta-learning has been applied to lifelong language learning due to its ability to find an optimal model for efficient adaptation to any learned tasks. Generally, meta lifelong-learning partially stores samples from seen tasks in a memory and selects some of them to train the model, refresh the knowledge, and adapt the model for inference. However, the sample selection for these steps was usually done in a sub-optimal manner in existing work. Hence, we propose MeLSTA (Meta Lifelong-Learning with Selective and Task-Aware Adaptation) to effectively select the samples based on task identifiers and the adaptation scores reflecting the model behavior after adaptation. The results show that MeLSTA enhances the accuracy by 1.2% over the state-of-the-art while significantly shrinking the training duration by over 6 times. Additionally, our in-depth analysis reveals the strengths and limitations of MeLSTA and existing work, providing useful insights for future designs of meta lifelong-learning for NLP. View details
    Preview abstract Misgendering is the act of referring to someone in way that does not reflect their gender identity. Translation systems, including foundation models capable of translation, can produce errors that result in misgendering harms. To measure the extent of such potential harms when translating into and out of English, we introduce a dataset, MiTTenS, covering 26 languages. The dataset is constructed with handcrafted passages that target known failure patterns, longer synthetically generated passages, and natural passages sourced from multiple domains. We demonstrate the usefulness of the dataset by evaluating both dedicated neural machine translation systems and foundation models, and show that all systems exhibit errors resulting in misgendering harms, even in high resource languages. View details
    Building Recommendation Systems using Lambda Architecture
    Vipul Bharat Marlecha
    Sreyashi Das
    International Research Journal of Engineering and Technology (IRJET), Volume: 11 Issue: 05 | May 2024 (2024)
    Preview abstract This paper studies the recommendation systems that are typical to content discovery and personalized services like Netflix and Amazon. The study includes typical components of recommendation systems, what data and inputs are required to serve depending on the machine learning models used. We share how the recommendations leverage a mix of batch processing and streaming databases, and end with trends and potential future developments for recommendation systems View details