Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10855 publications
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    CrossCheck: Input Validation for WAN Control Systems
    Bharath Modhipalli
    Rishabh Iyer
    Isaac Keslassy
    Sylvia Ratnasamy
    Networked Systems Design and Implementation (NSDI) (2026) (to appear)
    Preview abstract We present CrossCheck, a system that validates inputs to the Software-Defined Networking (SDN) controller in a Wide Area Network (WAN). By detecting incorrect inputs—often stemming from bugs in the SDN control infrastructure—CrossCheck alerts operators before they trigger network outages. Our analysis at a large-scale WAN operator identifies invalid inputs as a leading cause of major outages, and we show how CrossCheck would have prevented those incidents. We deployed CrossCheck as a shadow validation system for four weeks in a production WAN, during which it accurately detected the single incident of invalid inputs that occurred while sustaining a 0% false positive rate under normal operation, hence imposing little additional burden on operators. In addition, we show through simulation that CrossCheck reliably detects a wide range of invalid inputs (e.g., detecting demand perturbations as small as 5% with 100% accuracy) and maintains a near-zero false positive rate for realistic levels of noisy, missing, or buggy telemetry data (e.g., sustaining zero false positives with up to 30% of corrupted telemetry data). View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Preview abstract Despite the advent of legislation such as the General Data Protection Regulation (GDPR) with its associated "Right to be Forgotten" (RTBF), few, if any, studies have measured user reactions to realistic edge cases with public-interest content. Surveying both users covered by and excluded from RTBF, this vignette-based survey experiment sought to better understand how users think of delisting content from search engine results and what factors influence user perceptions. While leaving information accessible in search engine results generally leads to warmer feelings towards those search engines than delisting it, we find that users do prefer different outcomes depending on contextual elements specific to given cases. We also find that whether a country has active RTBF legislation does seem to be associated with both knowledge and attitudes about RTBF, but is unlikely to explain all of it. These results indicate a complex context around removing public-interest content from search engines’ results; it is essential that experts sensitive to local context perform the review in order to ensure that removal requests are handled in a way that meets users’ expectations. View details
    Preview abstract Agents based on large language models (LLMs) for machine learning engineering (MLE) can automatically implement ML models via code generation. However, existing approaches to build such agents often rely heavily on inherent LLM knowledge and employ coarse exploration strategies that modify the entire code structure at once. This limits their ability to select effective task-specific models and perform deep exploration within specific components, such as experimenting extensively with feature engineering options. To overcome these, we propose MLE-STAR, a novel approach to build MLE agents. MLESTAR first leverages external knowledge by using a search engine to retrieve effective models from the web, forming an initial solution, then iteratively refines it by exploring various strategies targeting specific ML components. This exploration is guided by ablation studies analyzing the impact of individual code blocks. Furthermore, we introduce a novel ensembling method using an effective strategy suggested by MLE-STAR. Our experimental results show that MLE-STAR achieves medals in 64% of the Kaggle competitions on the MLE-bench Lite, significantly outperforming the best alternative. View details
    Preview abstract Large language models are typically pretrained on a corpus of natural language text. In recent years, the desire to create language models which can interpret and generate code in different programming languages has led to the inclusion of non-linguistic code in the pretraining corpora for language models. Aside from aiding programming-related tasks, anecdotal evidence suggests that including code in pretraining corpora may improve performance on other, unrelated tasks: To study this, we pretrain suites of language models on parameterized `code mixture' datasets which interleave natural language and code in two different settings: competitive, in which the total volume of data seen during pretraining is held constant; and additive, in which the volume of language data is held constant. We study how the pretraining mixture affects (a) general reasoning on BigBench tasks, and (b) compositionality, measured by generalization accuracy on finetuned compositional benchmarks. We find that increased code mixtures cause higher performance on compositional and reasoning tasks involving structured formal outputs (like semantic parsing and arithmetic) and, conversely that code harms performance on purely-linguistic or world knowledge tasks. View details
    Preview abstract Electrocardiograms (ECGs) are fundamental to cardiac diagnostics, providing noninvasive insights into cardiovascular conditions. Recent advancements in deep learning have led to foundation models (FMs) capable of learning powerful representations of ECG signals. However, these models often fail to fully exploit the periodic nature and diagnostic frequency bands of ECGs, leading to inefficiencies in computational cost and interpretability. We propose a novel ECG foundation model that learns nested embeddings, where each subset of dimensions encodes progressively higher-frequency information. By explicitly modeling frequency structures and applying a correlation penalty, the method achieves compact, high-rank representations that reduce model size without sacrificing performance. We evaluate our approach on two large-scale datasets for embedding redundancy and prediction performance on downstream clinical tasks such as arrhythmia classification, and cardiac condition detection. We observe similar prediction performance AUROC scores and lower embedding redundancy, offering a computationally efficient and interpretable framework for ECG analysis. Finally, the representations obtained from our model in UK Biobank data capture known cardiovascular variants and detect novel loci, which can be applied to drug discovery. View details
    Mapping Farmed Landscapes from Remote Sensing
    Alex Wilson
    Michelangelo Conserva
    Charlotte Stanton
    CCAI Workshop at NeurIPS (2025)
    Preview abstract To overcome the critical lack of detailed ecological maps needed for managing agricultural landscapes, we developed Farmscapes: the first large-scale, high-resolution map that identifies ecologically vital rural features, including often overlooked elements like hedgerows and stone walls. We achieved high accuracy in mapping key habitats with a deep learning model trained on aerial imagery and expert annotations. As a result, this work enables data-driven planning for habitat restoration, supports the monitoring of key initiatives like the EU Biodiversity Strategy, and lays a foundation for advanced analysis of landscape connectivity. View details
    ZAPBench: A Benchmark for Whole-Brain Activity Prediction in Zebrafish
    Alexander Immer
    Alex Bo-Yuan Chen
    Mariela D. Petkova
    Nirmala A. Iyer
    Luuk Willem Hesselink
    Aparna Dev
    Gudrun Ihrke
    Woohyun Park
    Alyson Petruncio
    Aubrey Weigel
    Wyatt Korff
    Florian Engert
    Jeff W. Lichtman
    Misha B. Ahrens
    International Conference on Learning Representations (ICLR) (2025)
    Preview abstract Data-driven benchmarks have led to significant progress in key scientific modeling domains including weather and structural biology. Here, we present the Zebrafish Activity Prediction Benchmark (ZAPBench), which quantitatively measures progress on the problem of predicting cellular-resolution neural activity throughout an entire vertebrate brain. The benchmark is based on a novel dataset containing 4d light-sheet microscopy recordings of more than 70,000 neurons in a larval zebrafish brain, along with motion stabilized and voxel-level cell segmentations of these data that facilitate development of a variety of forecasting methods. Initial results from a selection of time series and volumetric video modeling approaches achieve better performance than naive baseline methods, but also show room for further improvement. The specific brain used in the activity recording is also undergoing synaptic-level anatomical mapping, which will enable future integration of detailed structural information into ZAP forecasting methods. View details
    Preview abstract Modern deep learning algorithms use variations of gradient descent as their main learning methods. Gradient descent can be understood as the simplest Ordinary Differential Equation (ODE) solver; namely, the Euler method applied to the gradient flow differential equation. Since Euler, many ODE solvers have been devised that follow the gradient flow equation more precisely and more stably. Runge-Kutta (RK) methods provide a family of very powerful explicit and implicit high-order ODE solvers. However, these higher-order solvers have not found wide application in deep learning so far. In this work, we evaluate the performance of higher-order RK solvers when applied in deep learning, study their limitations, and propose ways to overcome these drawbacks. In particular, we explore how to improve their performance by naturally incorporating key ingredients of modern neural network optimizers such as preconditioning, adaptive learning rates, and momentum. View details
    Preview abstract In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR), which leverages contextual understanding of LLMs by directly incorporating the task description, candidate documents, and the query into the model's input prompt and tasking the LLM to identify relevant document(s). While it is effective, efficiency is a significant challenge in this paradigm, especially as the candidate list grows due to quadratic/super-linear scaling of attention operation with context length. To this end, this paper first identifies inherent and exploitable structures in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity: attention is dense within each document block but sparse across different documents in the context; and (2) query-document block relevance: the attention scores from certain query tokens to a document block in middle layers strongly correlate with that document's actual relevance. Motivated by these observations, we introduce BlockRank (Blockwise In-context Ranking), a novel method that adapts the attention operation in an LLM by (a) architecturally enforcing the observed inter-document block sparsity, reducing attention complexity from quadratic to linear without loss in performance, and (b) optimizing query-document block relevance for true relevant documents during fine-tuning using an auxiliary contrastive training objective, improving retrieval in attention. Experiments on BEIR, MSMarco and NQ with Mistral-7B demonstrate that BlockRank Mistral matches or outperforms existing SOTA listwise rankers and controlled fine-tuned baseline while being significantly more efficient at inference (4.7x for 100 MSMarco documents in context) and scaling gracefully to long-context shortlists, around 500 documents in-context (approximately 100K context length) within a second, presenting a scalable and effective solution for ICR. View details
    Preview abstract Background: Providers spend a large percentage of their day using electronic health record (EHR) technology and frequently report frustration when EHR tasks are time-consuming and effortful. To solve these challenges, artificial intelligence (AI)–based enhancements to EHR technology are increasingly being deployed. However, AI-based implementations for EHR features often lack user-centered evaluation. Objective: This study evaluates, using a user-centered approach, the implementation of an AI-powered search and clinical discovery tool within an EHR system. Methods: We conducted a mixed methods study consisting of interviews, observations, and surveys for 5 months. Results: High adoption rates for the AI-based features (163/176, 93% users after 3 months) and significant increases across key metrics, including user satisfaction (U=49; P<.001) and perception of time saved (U=49; P<.001), demonstrated that the AI-based features were not only successfully integrated into various clinical workflows but also improved the user experience for clinicians. Conclusions: Our results underscore the feasibility and effectiveness of using a user-centered approach for the deployment of clinical AI tools. High adoption rates and positive user experiences were driven by our user-centered research program, which emphasized close collaboration with users, rapid incorporation of feedback, and tailored user training. This study program can be used as a starting framework for the design and integration of human-centered research methods for AI tool deployment in clinical settings. View details
    From Few to Many: Self-Improving Many-Shot Reasoners Through Iterative Optimization and Generation
    Han Zhou
    Hootan Nakhost
    Ke Jiang
    International Conference on Learning Representations (ICLR) (2025)
    Preview abstract Recent advances in long-context large language models (LLMs) have led to the emerging paradigm of many-shot in-context learning (ICL), where it is observed that scaling many more demonstrating examples beyond the conventional few-shot setup in the context can lead to performance benefits. However, despite its promise, it is unclear what aspects dominate the benefits and whether simply scaling to more examples is the most effective way of improving many-shot ICL. In this work, we first provide an analysis of the factors driving many-shot ICL, and we find that 1) many-shot performance can still be attributed to often a few disproportionately influential examples and 2) identifying such influential examples ("optimize") and using them as demonstrations to regenerate new examples ("generate") can lead to further improvements. Inspired by the findings, we propose BRIDGE, an algorithm that alternates between the optimize step with Bayesian optimization to discover the influential sets of examples and the generate step to reuse this set to expand the reasoning paths of the examples back to the many-shot regime automatically. On Gemini, Claude, and Mistral LLMs of different sizes, we show that BRIDGE to significant improvements across a diverse set of tasks, including symbolic reasoning, numerical reasoning, and code generation. View details
    Preview abstract Over more than a decade there has been an extensive research effort of how effectively utilize recurrent models and attentions. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps an attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of a fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can \emph{effectively} scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines. View details
    CountQA: How Well Do MLLMs Count in the Wild?
    Jayant Tamarapalli
    Rynaa Grover
    Nilay Pande
    Sahiti Yerramilli
    arXiv preprint arXiv:2508.06585 (2025)
    Preview abstract While Multimodal Large Language Models (MLLMs) display a remarkable fluency in describing visual scenes, their ability to perform the fundamental task of object counting remains poorly understood. This paper confronts this issue by introducing CountQA, a challenging new benchmark composed of over 1,500 question-answer pairs centered on images of everyday, real-world objects, often in cluttered and occluded arrangements. Our evaluation of 15 prominent MLLMs on CountQA systematically investigates this weakness, revealing a critical failure of numerical grounding: the models consistently struggle to translate raw visual information into an accurate quantity. By providing a dedicated tool to probe this foundational weakness, CountQA paves the way for the development of more robust and truly capable MLLMs that are spatially aware and numerically grounded. View details
    ×