Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10469 publications
    A Recipe for Improving Remote Sensing Zero Shot Generalization
    Aviad Barzilai
    Yotam Gigi
    Vered Silverman
    Yehonathan Refael
    Bolous Jaber
    Amr Helmy
    3rd ML4RS Workshop at ICLR 2025
    Preview abstract Foundation models have had a significant impact across various AI applications, enabling applications for use cases that were previously impossible. Visual language models (VLMs), in particular, have outperformed other techniques in many tasks. In remote sensing (RS), foundation models have shown improvements across various applications. However, unlike other fields, the use of VLMs with large-scale remote sensing image-text datasets remains limited. In this work, we first introduce two novel image-caption datasets for training of remote sensing foundation models. The first dataset pairs aerial and satellite imagery, aligned with Google-Maps data, with high-quality captions generated using Gemini. The second utilizes public web images and their corresponding alt-text, filtered for only remote sensing domain, resulting in a highly diverse dataset. We show that using these datasets to pre-train the Mammut [], a VLM architecture, results in state-of-the-art generalization performance in a zero-shot classification and cross-modal retrieval on well-known public benchmarks. Secondly, we leverage this newly pre-trained VLM to generate inference attention maps for a novel class query (i.e., a class unseen during training). We subsequently propose an iterative self-supervised fine-tuning approach where samples aligned with these attention maps are iteratively pseudo-labeled and utilized for model training. View details
    Sensible Agent: A Framework for Unobtrusive Interaction with Proactive AR Agent
    Min Xia
    Yanhe Chen
    Dinesh Manocha
    Proceedings of the 39th Annual ACM Symposium on User Interface Software and Technology (UIST), ACM (2025), pp. 22
    Preview abstract Proactive AR agents promise context-aware assistance, but their interactions often rely on explicit voice prompts or responses, which can be disruptive or socially awkward. We introduce Sensible Agent, a framework designed for unobtrusive interaction with these proactive agents. Sensible Agent dynamically adapts both “what” assistance to offer and, crucially, “how” to deliver it, based on real-time multimodal context sensing. Informed by an expert workshop (n=12) and a data annotation study (n=40), the framework leverages egocentric cameras, multimodal sensing, and Large Multimodal Models (LMMs) to infer context and suggest appropriate actions delivered via minimally intrusive interaction modes. We demonstrate our prototype on an XR headset through a user study (n=10) in both AR and VR scenarios. Results indicate that Sensible Agent significantly reduces perceived intrusiveness and interaction effort compared to voice-prompted baseline, while maintaining high utility. View details
    Online-EYE: Multimodal Implicit Eye Tracking Calibration for XR
    Baosheng James Hou
    Lucy Abramyan
    Prasanthi Gurumurthy
    Khushman Patel
    Haley Adams
    Andrea Colaco
    Ken Pfeuffer
    Hans Gellersen
    Karan Ahuja
    2025
    Preview abstract Unlike other inputs for VR that work out of the box, eye tracking typically requires custom calibration per user or session. We present a multimodal inputs approach for implicit calibration of eye tracker in VR, leveraging UI interaction for continuous, background calibration. Our method analyzes gaze data alongside controller interaction with UI elements, and employing ML techniques it continuously refines the calibration matrix without interrupting users from their current tasks. Potentially eliminating the need for explicit calibration. We demonstrate the accuracy and effectiveness of this implicit approach across various tasks and real time applications achieving comparable eye tracking accuracy to native, explicit calibration. View details
    Google's Approach for Secure AI Agents
    Santiago (Sal) Díaz
    Kara Olive
    Google (2025)
    Preview abstract As part of Google's ongoing efforts to define best practices for secure AI systems, we’re sharing our aspirational framework for secure AI agents. We advocate for a hybrid, defense-in-depth strategy that combines the strengths of traditional, deterministic security controls with dynamic, reasoning-based defenses. This approach is grounded in three core principles: agents must have well-defined human controllers, their powers must be carefully limited, and their actions and planning must be observable. This paper reflects our current thinking and the direction of our efforts as we work towards ensuring that AI agents can be powerful, useful, and secure by default. View details
    Scaling Laws for Downstream Task Performance in Machine Translation
    Natalia Ponomareva
    Hussein Hazimeh
    Sanmi Koyejo
    International Conference on Learning Representations (ICLR) (2025) (to appear)
    Preview abstract Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the \emph{pretraining} data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data. View details
    Preview abstract This tutorial examines the progress and scaling limitations of IM-DD based optical technologies and explores how datacenter use cases optimized coherent technology, including a newly proposed polarization-folding, time-diversity approach and a novel single-sideband coherent detection technology—can address some of these challenges View details
    CountQA: How Well Do MLLMs Count in the Wild?
    Jayant Tamarapalli
    Rynaa Grover
    Nilay Pande
    Sahiti Yerramilli
    (2025)
    Preview abstract While Multimodal Large Language Models (MLLMs) display a remarkable fluency in describing visual scenes, their ability to perform the fundamental task of object counting remains poorly understood. This paper confronts this issue by introducing CountQA, a challenging new benchmark composed of over 1,500 question-answer pairs centered on images of everyday, real-world objects, often in cluttered and occluded arrangements. Our evaluation of 15 prominent MLLMs on CountQA systematically investigates this weakness, revealing a critical failure of numerical grounding: the models consistently struggle to translate raw visual information into an accurate quantity. By providing a dedicated tool to probe this foundational weakness, CountQA paves the way for the development of more robust and truly capable MLLMs that are spatially aware and numerically grounded. View details
    Test-Time Visual In-Context Tuning
    Jiahao Xie
    Nathalie Rauschmayr
    Bernt Schiele
    2025
    Preview abstract Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time visual in-context tuning (VICT), a method that can learn adaptive VICL models on the fly with a single test sample. Specifically, We flip the role between task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on seven representative vision tasks with 15 corruptions demonstrate that our VICT can improve the generalizability of VICL to unseen new domains View details
    Preview abstract The rapid emergence of generative AI models and AI powered systems has surfaced a variety of concerns around responsibility, safety, and inclusion. Some of these concerns address specific vulnerable communities, including people with disabilities. At the same time, these systems may introduce harms upon disabled users that do not fit neatly into existing accessibility classifications, and may not be addressed by current accessibility practices. In this paper, we investigate how stakeholders across a variety of job types are encountering and addressing potentially negative impacts of AI on users with disabilities. Through interviews with 25 practitioners, we identify emerging challenges related to AI’s impact on disabled users, systemic obstacles that contribute to problems, and effective strategies for impacting change. Based on these findings, we offer suggestions for improving existing processes for creating AI-powered systems and supporting practitioners in developing skills to address these emerging challenges. View details
    PreFix: Optimizing the Performance of Heap-Intensive Applications
    Chaitanya Mamatha Ananda
    Rajiv Gupta
    Han Shen
    CGO 2025: International Symposium on Code Generation and Optimization, Las Vegas, NV, USA (to appear)
    Preview abstract Analyses of heap-intensive applications show that a small fraction of heap objects account for the majority of heap accesses and data cache misses. Prior works like HDS and HALO have shown that allocating hot objects in separate memory regions can improve spatial locality leading to better application performance. However, these techniques are constrained in two primary ways, limiting their gains. First, these techniques have Imperfect Separation, polluting the hot memory region with several cold objects. Second, reordering of objects across allocations is not possible as the original object allocation order is preserved. This paper presents a novel technique that achieves near perfect separation of hot objects via a new context mechanism that efficiently identifies hot objects with high precision. This technique, named PreFix, is based upon Preallocating memory for a Fixed small number of hot objects. The program, guided by profiles, is instrumented to compute context information derived from dynamic object identifiers, that precisely identifies hot object allocations that are then placed at predetermined locations in the preallocated memory. The preallocated memory region for hot objects provides the flexibility to reorder objects across allocations and allows colocation of objects that are part of a hot data stream (HDS), improving spatial locality. The runtime overhead of identifying hot objects is not significant as this optimization is only focused on a small number of static hot allocation sites and dynamic hot objects. While there is an increase in the program’s memory foot-print, it is manageable and can be controlled by limiting the size of the preallocated memory. In addition, PreFix incorporates an object recycling optimization that reuses the same preallocated space to store different objects whose lifetimes are not expected to overlap. Our experiments with 13 heap-intensive applications yields reductions in execution times ranging from 2.77% to 74%. On average PreFix reduces execution time by 21.7% compared to 7.3% by HDS and 14% by HALO. This is due to PreFix’s precision in hot object identification, hot object colocation, and low runtime overhead. View details
    Neural Pathways to Program Success: Hopfield Networks for PERT Analysis
    Proceedings of Technology and Engineering Management Society Conference (TEMSCON Global), IEEE (2025)
    Preview abstract Project and task scheduling under uncertainty remains a fundamental challenge in program and project management, where accurate estimation of task durations and dependencies is critical for delivering complex, multi project systems. The Program Evaluation and Review Technique provides a probabilistic framework to model task variability and critical paths. In this paper, the author presents a novel formulation of PERT scheduling as an energy minimization problem within a Hopfield neural network architecture. By mapping task start times and precedence constraints into a neural computation framework, the networks inherent optimization dynamics is exploited to approximate globally consistent schedules. The author addresses key theoretical issues related to energy function differentiability, constraint encoding, and convergence, and extends the Hopfield model for structured precedence graphs. Numerical simulations on synthetic project networks comprising up to 1000 tasks demonstrate the viability of this approach, achieving near optimal makespans with minimal constraint violations. The findings suggest that neural optimization models offer a promising direction for scalable and adaptive project tasks scheduling under uncertainty in areas such as the agentic AI workflows, microservice based applications that the modern AI systems are being built upon. View details
    Ransomware over Modern Web Browsers: A Novel Strain and A New Defense Mechanism
    Harun Oz
    Ahmet Aris
    Leonardo Babun
    Selcuk Uluagac
    Abbas Acar
    ACM Transactions on the Web (2025)
    Preview abstract Ransomware is an increasingly prevalent form of malware targeting end-users, governments, and businesses. As it has evolved, adversaries added new capabilities to their arsenal. Throughout the ransomware evolution, the adversaries propose a next-generation browser-based ransomware, RøB, that performs its malicious actions via emerging web technologies, File System Access API (FSA) and WebAssembly (Wasm). RøB uses this API through the victims’ browsers; hence, it does not require the victims to download and install malicious binaries. We performed extensive evaluations with 3 different OSs, 23 file formats, 29 distinct directories, 5 cloud providers, and 4 antivirus solutions. Our evaluations show that RøB can encrypt various types of files in the local and cloud-integrated directories, external storage devices, and network-shared folders of victims. Our experiments also reveal that popular cloud solutions, Box Individual and Apple iCloud can be severely affected by RøB. Moreover, we conducted tests with commercial antivirus software such as AVG, Avast, Kaspersky, Malware Bytes that perform sensitive directory and suspicious behavior monitoring against ransomware. We verified that RøB can evade these antivirus software and encrypt victim files. Moreover, existing ransomware detection solutions in the literature also cannot be a remedy against RøB due to its distinct features. Therefore, in this paper, we also propose broguard, a new detection system for RøB-like attacks. broguard monitors the web applications that use the FSA API via function hooking and uses a machine learning classifier to detect RøB-like attacks in real-time without any file loss. Performance evaluations of broguard on a comprehensive dataset show that broguard can detect RøB-like browser-based ransomware attacks with over 99% accuracy and minimal overhead. View details
    Heterogeneous graph neural networks for species distribution modeling
    Christine Kaeser-Chen
    Keith Anderson
    Michelangelo Conserva
    Elise Kleeman
    Maxim Neumann
    Matt Overlan
    Millie Chapman
    Drew Purves
    arxiv (2025)
    Preview abstract Species distribution models (SDMs) are necessary for measuring and predicting occurrences and habitat suitability of species and their relationship with environmental factors. We introduce a novel presence-only SDM with graph neural networks (GNN). In our model, species and locations are treated as two distinct node sets, and the learning task is predicting detection records as the edges that connect locations to species. Using GNN for SDM allows us to model fine-grained interactions between species and the environment. We evaluate the potential of this methodology on the six-region dataset compiled by National Center for Ecological Analysis and Synthesis (NCEAS) for benchmarking SDMs. For each of the regions, the heterogeneous GNN model is comparable to or outperforms previously-benchmarked single-species SDMs as well as a feed-forward neural network baseline model. View details
    MaRVL-QA: A Benchmark for Mathematical Reasoning over Visual Landscapes
    Nilay Pande
    Sahiti Yerramilli
    Jayant Tamarapalli
    Rynaa Grover
    (2025)
    Preview abstract A key frontier for Multimodal Large Language Models (MLLMs) is the ability to perform deep mathematical and spatial reasoning directly from images, moving beyond their established success in semantic description. Mathematical surface plots provide a rigorous testbed for this capability, as they isolate the task of reasoning from the semantic noise common in natural images. To measure progress on this frontier, we introduce MaRVL (Mathematical Reasoning over Visual Landscapes), a new benchmark designed to quantitatively evaluate these core reasoning skills. The benchmark comprises two novel tasks: Topological Counting, identifying and enumerating features like local maxima; and Transformation Recognition, recognizing applied geometric transformations. Generated from a curated library of functions with rigorous ambiguity filtering, our evaluation on MaRVL reveals that even state-of-the-art MLLMs struggle significantly, often resorting to superficial heuristics instead of robust spatial reasoning. MaRVL provides a challenging new tool for the research community to measure progress, expose model limitations, and guide the development of MLLMs with more profound reasoning abilities. View details
    Matryoshka Model Learning for Improved Elastic Student Models
    Chetan Verma
    Cho-Jui Hsieh
    Ngot Bui
    Yang Zhang
    Wen Chen
    Xin Liu
    Inderjit Dhillon
    2025
    Preview abstract Industry-grade ML models are carefully designed to meet rapidly evolving serving constraints, which requires significant resources for model development. In this paper, we propose MatTA, a framework for training multiple accurate Student models using a novel Teacher-TA-Student recipe. TA models are larger versions of the Student models with higher capacity, and thus allow Student models to better relate to the Teacher model and also bring in more domain-specific expertise. Furthermore, multiple accurate Student models can be extracted from the TA model. Therefore, despite only one training run, our methodology provides multiple servable options to trade off accuracy for lower serving cost. We demonstrate the proposed method, MatTA, on proprietary datasets and models. Its practical efficacy is underscored by live A/B tests within a production ML system, demonstrating 20% improvement on a key metric. We also demonstrate our method on GPT-2 Medium, a public model, and achieve relative improvements of over 24% on SAT Math and over 10% on the LAMBADA benchmark. View details